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Abstract
We consider the Cauchy problem of second order hyperbolic equation with time

depending coefficients. Time depending singular coefficient can bring some loss of
regularity of the solution; for instance “infinitely many oscillation”, “infinite order
degeneracy” and “accumulation of zeros” crucially influence on the regularity loss.
In this paper we make clear the order of regularity loss from the interaction of the
singular effects, and also discuss the optimality.

1. Introduction

We consider the loss of regularity of the solutions to the following Cauchy prob-
lem of second order hyperbolic equation:

(1)
( 2 ( )2 ) ( ) = 0 ( ) [0 ] R

( ) = 0( ) ( ) = 1( ) R

where = =1
2 , ( ) 0 and is a small positive number.

Let ( ) be a positive function for R . We introduce the following weighted
energy ( ; ( )) for the solution of (1) as follows:

( ; ( )) :=
R

E( ; ( )) :=
R

( )2( ( )2 2 ˆ ( ) 2 + ˆ ( ) 2)

where ˆ( ) denote the partial Fourier transformation with respect to the space vari-
able .

Let us suppose that ( ) is strictly positive and Lipschitz continuous on [0 ],
then one can prove the following energy inequality:

(2) ( ; 1) ( ; ( ))

with ( ) 1, it follows that (1) is 2 well-posed, where is a positive constant; we
will denote by and ( = 0 1 ) some positive constants from below without
any confusion.

On the other hand, if ( ) has a singularity, which means non-Lipschitz continu-
ity or having a zero, then 2 well-posedness dose not hold in general. In the other
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words, the solution loses some regularity from the influences of singular behavior of
( ). According to Colombini, De Giorgi and Spagnolo [1], if ( )is strictly positive

and Ḧolder continuous of order (0 1), then one can prove the inequality (2) with
( ) = exp( 1 ) for 1 (1 ), but not for 1 (1 ) in general, where

= 1 + 2. Such a problem for non-strictly positive coefficient ( ) is also consid-
ered by Colombini, Jannelli and Spagnolo [4], and the order of ( ), which describes
the loss of regularity, is higher than strictly positive case with the same Ḧolder con-
tinuity to ( ). In any cases, such singularities of the coefficients causes infinite order
regularity loss for the solution. Especially, if ( ) is strictly positive and log-Lipschitz
continuous, which means (1) ( 2) ( 1 2) ln 1 2 for 1 = 2, then one
can take ( ) = for a positive constant , it follows that (1) is well-posed.

Hölder and log-Lipschitz continuity are appropriate to classify the relations be-
tween the singularity of non-Lipschitz continuous coefficient and the order of regular-
ity loss of the solution. But such global regularity conditions for ( ) are not appro-
priate if one is interested in the loss of regularity which isgenerated from one point
singularity of ( ). Actually, such a precise estimate for theloss of regularity will be
required from an application to non-linear problem.

In the present paper we consider the cases that the coefficient ( ) has only one
or countably many singular points as goes to 0.

2. Results

Let ( ) be decomposed into a product of the two non-negative functions ( ) and
( ) by

( ) = ( ) ( )

where ( ), and ( ) describe theincreasing behavior, and theoscillating behaviorof
( ) respectively. Here we suppose that

( ) 2([0 ]) ( ) 2((0 ])(3)

( ) 0
( )

( )

( )

( )

2 ( )

( )

( )

( )
on (0 ](4)

ln
( )

( )
(ln ( ) 1) 0(5)

and

0 ( ) 1
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where 0, 0 and 1 are non-negative constants and ( ) =0 ( ) . Moreover, for a
non-negative real number1 we suppose the following conditions to ( ) and ( ):

(6) sup
(0 ]

( )

( )(ln ( ) 1) 1
( ) + sup

(0 ]

( )

( )(ln ( ) 1) 1

2

( )

Then our first theorem is described as follows:

Theorem 2.1. Let 0 0 and = max 0 1 . Under the assumptions(3)–(6)
the following estimate holds:

(7) ( ; 1) 0 ( ; exp( 1(ln ) ))

on [0 ]. Moreover, the estimate(7) is optimal, that is, for any given positive real
number there exists( ) and ( ) satisfying the assumptions of the theorem such that
for any positive constants 0 and 1 the estimate

(8) ( ; 1) 0 ( ; exp( 1(ln ) ))

does not hold in general.

The following corollary is concluded form the theorem:

Corollary 2.1. Under the assumptions(3)–(6) with 0 0 we have the follow-
ings:
(i) If 1, then (1) is well-posed on[0 ]. On the other hands, if 1,
then (1) is not well-posed in general.
(ii) If 1 and (0) 0, then the loss of regularity for the solution of(1) at = 0
is arbitrarily small. Moreover, if = 0, then (1) is 2 well-posed on[0 ], that is,
the solution of(1) loses any regularity at = 0.

Theorem 2.1 gives some optimal regularity estimates in the case that the coeffi-
cient ( ) has only one (or no) zero. But we can consider the casethat ( ) has count-
ably many number of zeros under some restriction to ( ) aroundthe zeros. Besides
the conditions (3)–(6), we suppose the following conditions:

For a small positive real number there exist sequences of positive real numbers

1, +
1 and 1 satisfying +

+1
+ for any such that

; ( ) =
1

+
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and

(9) 0
( )

( )

( +1)

( +1)
1

Here we note that = . Then we introduce the following conditions to ( ) for
:= + ( = 1 2 ):

There exist constants 0 and 0 independent of , and sequences of real numbers

1 and 1 satisfying 1 0 and 0 0 such that

(10)
( )

( )
+

( )

( )

2 ( )

( )

2

for any and

(11) 0
( )

( )
+ ( ) 1

( )

( )
+

for any , where (1 2) = 2

1
( ) .

Then we have the following theorem:

Theorem 2.2. Suppose the conditions(3)–(6) and (9)–(11). If ( ) 0, then the
estimate(7) holds on[0 ] with

(12) := max 0 1 sup
ln

ln ln ( ) 1

REMARK 2.1. One can replace the definition of from (12) to

:= max 0 1 lim sup
ln

ln ln ( ) 1
+

where is an arbitrary given positive real number.

Let us briefly introduce some related results to our theorems.
In the strictly hyperbolic case ( ) 1, ( ) = ( ) and0 0, by Colombini,

Del Santo and Kinoshita [2] it is proved that the conditions

(13) ( ) 1((0 ]) and sup
(0 ]

( )

are sufficient for the well-posedness of (1). For instance, () = ( ) = 2 +
cos(ln 1) satisfies the condition (13). If ( ) 2((0 ]), then more singular be-
havior for ( ) at = 0 is allowed for the well-posedness than (13). Indeed the
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condition is given as follows:

(14) ( ) 2((0 ]) and sup
(0 ] ln 1

( ) + sup
(0 ] ln 1

2

( )

Moreover, the condition (14) is optimal (see Colombini, Del Santo and Reissig [3] and
Hirosawa [6]). In Hirosawa [7] it is considered not only finite loss of regularity (
well-posedness) but also small loss of regularity from the point of view for the gen-
eralization of the condition (14), and this result corresponds to Theorem 2.1 of the
conclusions (7) with ( ) = 1. Thus, for the coefficient

(15) ( ) = 2 + cos((ln 1) +1)

we see that if “ 1”, “ = 1”, “0 1” and “ = 0”, then the order of regu-
larity loss of the solution to (1) is “infinite”, “finite”, “arbitrarily small” and “nothing”
respectively.

REMARK 2.2. We only see from [2] that the regularity loss is at most finite for
the coefficient (15) with = 0. On the other hand, in virtue of ( ) 2((0 ]),
actually the regularity loss is nothing from the conclusionof [7]. One cannot say that
the conclusion of [7] (and also [3], [6]) contains the conclusion of [2], because of the
difference of the assumptions to the differentiability of (). Incidentally, it is proved
in Hirosawa and Reissig [8] that one can weaken the assumption ( ) 2((0 ])
of (14) to ( ) 1+ ((0 ]) for any 0.

In the weakly hyperbolic case (0) = 0 and0 0, by Tarama [11] it is proved
that for ( ) = and a positive 2 periodic function ( ) the condition 1 2 is
necessary and sufficient for the well-posedness of (1). By Yagdjian [12] the func-
tions ( ) and ( ) are generalized. Their conditions for the well-posedness corre-
spond to Theorem 2.1 with 1. Recently, by Reissig [10] the estimate (7) is proved
for 0 1. Thus actually the new point of Theorem 2.1 is the optimality of the
estimate (7) for = 1, that is, the estimate (8) does not hold ingeneral even if = 1.
Indeed, the proof of such an optimality is not a simple analogy of the case = 1.

REMARK 2.3. The estimate (7) with 1 implies that the Cauchy problem (1)
is (or ) well-posed on [0 ], in the other words, there exist a positive num-
ber and a unique solution ( ) such that ( ) 2

=0
2 ([0 ]; ) for

any ( 0 1) +2 +1, where denotes the usual Sobolev space of order .
Then describes the order of regularity loss. If ( ) is strictly positive, then the es-
timate (7) with 1 implies that the order of regularity loss isarbitrarily small. On
the other hand, such a small loss of regularity does not follow from the estimate (7)
in general, because ( ; 1) is a weighted energy. Indeed, if (0) = 0 at = 0, then the
estimate (7) shows only the boundedness of ( ) .
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If ( ) has infinitely many number of zeros, we meet other difficulties for the
proof of the estimate (7). By Yamazaki [13] and [14] the and2 well-posedness
of (1) for such coefficients are considered under some suitable assumptions to ( ),
which corresponds to the assumptions (9)–(10). (For the details will be mentioned be-
low.)

Theorem 2.2 seems to be interpreted as only a unified description of the preced-
ing results. But actually there are gaps between these results. The following examples
will be appropriate to understand what is the meaning of our theorems, and also the
connections with the preceding results.

EXAMPLE 2.1. Let ( ) = and ( ) be defined by

( ) = 1( )(1 + sin( )
2
) + 2( ) sin( )

2
+ 3( )

where ( ) = 1 or ( ) = 0, 1( ) + 2( ) + 3( ) = 1.
(i) In the case that 1( ) = 1 and 2( ) = 3( ) = 0, (6) holds for = max 0 ( )
1 .
(ii) In the case that 2( ) = 1 and 1( ) = 3( ) = 0, (6) holds for = max 0 0 1 = 1.
(iii) Let ( ) be defined by ( ) = 1 for I and ( ) = 0 for I , where

I1 := [0 ] (I2 I3)

I2 :=
=1

+
1

2

1 1

2

1

I3 :=
=1

( + ) 1 +
1

2

1 1

2

1
1

:= 1 1
:=

1

2

:=

+
1

2

1

2
for +

1

2
Z

+
1

2

1

2
+ 1 for +

1

2
Z

with 0, 1 0, 0 and [ ] denotes Gauss’ symbol. Then (6) holds for

= max 0 max 0 1 = max 1

The conclusions (i) and (ii)–(iii) are proved form Theorem 2.1, and Theorem 2.2
respectively. The order of regularity loss is determined bythe parameters , and

, which describe thevanishing order, distribution of zeros, and accumulation of the
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oscillation as 0 respectively. Then the corresponding problems and results which
considered in the previous papers are the followings:
• for (i) with 1 2 and = 1, (7) holds for = 1 ([11]);
• for (ii) with = 1 and = , (7) holds for = 1 ([13]);
• for (i) with 1 and = 1, (7) holds for = 1 1 ([10]);
and nothing more concerning Example 2.1. Thus we could consider only some re-
stricted singular effects of the coefficient which are described by the parameters ,
and in the previous results. On the other hand, the assertionof our theorems is that
the loss of regularity is brought from the three different singular effects of the coeffi-
cient:
(s- ) vanishing order of ( ) as = 0;
(s- ) distribution of zeros, which is described by the order of ;
(s- ) accumulation of the oscillation as = 0, which is described by the order of ( )
and ( ) .
Then, these orders are denoted by , and respectively for Example 2.1 (iii), and
the order of regularity loss of the solution is determined bythe interactions of these
parameters such as (12).

3. Proof of the theorems

3.1. Zones. Let us briefly introduce our strategy of the proof. Our goal isto
have a good representation of the solution to conclude the estimate (7). After partial
Fourier transformation with respect to , (1) is rewritten asthe following Cauchy prob-
lem:

(16)
( 2 + ( )2 2) ( ) = 0 ( ) [0 ] R

( ) = 0( ) ( ) = 1( ) R

where ( ) = ( ), 0( ) = 0( ) and 1( ) = 1( ). The second order scalar equa-
tion of (16) can be rewritten as the following first order system:

( ) = ( ( ) + ( )) ( )

If ( ) is diagonal and ( ) = 0, 0 ( ) 0(ln ) , ( ) 2

1E( ; 1) and ( )2
2E( ; 1), then our proof is concluded. Thus the main

part of the proof is how to extract such a vector valued function ( ).

REMARK 3.1. We transform our problem (1) to (16) in the first step. This step
performs only the case that the coefficient depends only on , but this step is not
essential. Indeed, the method to use some properties of pseudo-differential operator,
which was introduced in [8], hints a possibility to be generalized our problem to the
case of dependent coefficient.
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Let be a positive real number, to be chosen later. For an arbitrary given large
number we define , the sequences of positive real numbers and+ satis-
fying + implicitly by

(17) ( ) = (ln ( ) 1)

and

(18) = ( ) ( ) = ( +) ( +)

Moreover, we denote by = ( ) the positive integer satisfying 1.
Then we define the sets of intervals 0 = 0( ), 0 = 0( ), 1 =

1( ) and 1 = 1( ) by

0 := [0 ];

0 := [0 ]; [ ]
1

[ +
+1 )

1 := [0 ]; [ ]
1

[ +)

and

1 := [0 ]; [ ]
1

([ ) [ + +))

In particular, if , and + +, then we regard that [ ), and [+ +) are
empty respectively. We shall call the sets 0 and 1 the pseudo-differential zones,
and the sets 0 and 1 the hyperbolic zones respectively.

Let us define ( ) = ( ; ) in the respective zones as follows:

( ; ) :=

1 ( ) + 1 ( ) ( )1 2 ( ) 1 2 for 0

( ) for

( +) for +

( ) for 0 1

Here we see from the definition of ( ) that

(19) ( )
( ) exp( (ln ( ) 1) ) for 0

( ) for 1
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Indeed, the estimate of (19) in 0 is straightforward from (5). We introduce the fol-
lowing lemma in order to show the estimate in 1:

Lemma 3.1. The following estimate holds for any:

max
0 1

( 1)

( 0)

Proof. Note that ( ) ( ) is monotone decreasing by (4). By (4), (9), (11) and
mean value theorem for 0 1

+ with 2 there exists 2 ( 0 1) such
that

ln
( 1)

( 0)
=

( 2)

( 2)
( 1 0)

( 1)

( 1)
( + )

( )

( )
( + ) +

( )

( )
( ) 1 0

Thus by (11) and Lemma 3.1 we have

( ) ( )
( )

( )
( ) + ( ) ( )

for [ ). If [ +), then (19) is proved by the same way.

3.2. First step of diagonalization procedure. Let us carry out some diagonal-
ization procedure to have a representation of the solution.Let us fix 0 R satis-
fying 0 = . For the solution ( 0) of (16) we define the vector valued function

0( ) = 0( ; ) by

0( ; ) :=
( ; ) ( 0)

( 0)

where = 1. Then 0( ) is a solution to the following first order system:

(20) ( 0( ) 0( )) 0( ) = 0

where

0( ) = 0( ; ) := ( ; )
0 1
1 0

and

0( ) = 0( ; ) :=

( ; )

( ; )
0

( ( )2 ( ; )2)

( ; )
0
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In the first step of diagonalization procedure which will be done below, we transform
the equation (20) taking the hyperbolicity into account. Wedefine the matrix 1 by

1 :=
1 1
1 1

Then (20) is rewritten as follows:

(21) ( 1( ) 11( ) 12( )) 1
1 0( ) = 0

where

1( ) = 1( ; ) := ( ; )
1 0
0 1

11( ) = 11( ; ) :=
( ; )

2 ( ; )
1 1
1 1

and

12( ) = 12( ; ) :=
( ( )2 ( ; )2)

2 ( ; )
1 1
1 1

respectively. Now (21) is a sufficiently good formula for theestimate in the pseudo-
differential zones 0 and 1.

3.3. Estimate in Z 0. We define the 2 2 matrix valued functions1( ) by

1( ) = 1( ; ) :=
exp ( ; ) 0

0 exp ( ; )

Noting 1( ) 1 = 1( ) and 1( )( 1( )) 1( ) = the equation (21) is
rewritten as follows:

(22) ( ˜ 1( )) 1( ) = 0

where

˜ 1( ) = ˜ 1( ; ) := 1( ; )( 11( ; ) + 12( ; )) 1( ; )

and

1( ) = 1( ; ) := 1( ; ) 1
1 0( ; )
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Then the formal solution of (22) is represented by

(23) 1( ) = 1( )
=0

0

˜ 1( 1 ) ˜ 1( +1 ) +1 1

where 0 = . it follows that

1( ) 1( )
=0

1

!
˜ 1( )

1( ) exp ( 11( ) + 12( ) )

where denotes the matrix norm of 2 2 matrix, that is, for = 2
=1 it is

defined by := max . Consequently, we have

1( ) 1( ) exp
0

( )

2 ( )
+

0

( )2 ( )2

2 ( )

1( ) exp
0

( )

2 ( )
+

2 0
( )

= 1( ) exp
1

2
ln 1 + 1 ( )

( )
+

( )

2
+ 1 ( )

1( ) exp( (ln ( ) 1) )

by (5) and (17), it follows that

(24) 1( ) 1( ) exp( (ln ) )

in 0.

3.4. Estimate in Z 1. We note that 11( ) 0 in 1. By (18) we have

12( )
2

( )2 ( )2

( )

( )( ) ( ) ( ) =

where we note that (11) implies the following estimates in :

(25) 0
1 ( )

( )
1

1

and

(26)
( )

( )

( )

( )
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Analogously, we have

+

12( )

Consequently, there exists a positive constant independent of such that

(27) 1( ) 1( ) for

and

(28) 1( +) 1( + +) for +

3.5. Second step of diagonalization procedure.The representation (23), which
is obtained after the first step of diagonalization procedure, performs well for the esti-
mates in the pseudo-differential zones. However, such a representation is insufficient
for the estimate in the hyperbolic zones. In the next step we transform the equa-
tion (21) in the hyperbolic zones 0 1 taking account of the assumption ( )

2((0 ]); we shall call this step the second step of diagonalization procedure.
Let us define 2( ) = 2( ; ) by

2( ; ) :=
1 ( ; )

( ; ) 1

where

( ) = ( ; ) :=
( )

4 ( )2

Now we suppose that 2( ) is invertible; which will be confirmed later. Noting ( ) =
( ), and the identities:

2( ) 1
2( ) = +

1

1 + ( )2
( ) ( ) ( )

( ) ( ) ( )

2( ) 1
1( ) 2( ) =

( )

1 + ( )2
1 ( )2 2 ( )

2 ( ) 1 + ( )2

and

2( ) 1
11( ) 2( ) =

( )

2 ( )(1 + ( )2)
1 + 2 ( ) + ( )2 1 ( )2

1 ( )2 1 2 ( ) + ( )2

we have

1
2 ( )( 1( ) 11( )) 2( ) = 2( ) 2( )
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where

2( ) = 2( ; ) :=
( ) +

( )

2 ( )
0

0 ( ) +
( )

2 ( )

2( ) = 2( ; ) := 1+( ) 2+( )

2 ( ) 1 ( )

1 ( ) = 1 ( ; ) =
2 ( )4

16 2 ( )4 ( )2

2 ( )2

( )3
+

( ) ( )
2 ( )4

2 ( )3

2 ( )5

and

2 ( ) = 2 ( ; ) =
2 ( )4

16 2 ( )4 ( )2

4 ( )

( )2

8 ( )2

( )3
+

( )3

2 2 ( )5

Thus (20) is rewritten as follows:

(29) ( 2( ) 2( )) 1
2 ( ) 1

1 0( ) = 0

3.6. Estimate in ZH 0. By (4), (6), (17) and noting ( ) in 0 we have
the followings:

( ; ) =
( )

4 ( )2
( )

4 ( )2
+

( )

4 2 ( )

( )
(ln ( ) 1)

( )
(ln ( ) 1) = 1

Therefore, 2( ) is uniformly invertible in 0 by choosing the constant suffi-
ciently large.

We define the 2 2 matrix valued functions2( ) by

2( ) = 2( ; ) :=
( )

( )
1( ; )

Noting 2( ) 1 = 2( ) and 2( )( 2( )) 2( ) = , (29) is rewritten as
follows:

(30) ( ˜ 2( )) 2( ) = 0

where

˜ 2( ) = ˜ 2( ; ) := 2( ; ) 2( ; ) 2( ; )
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and

2( ) = 2( ; ) := 2( ; ) 1
2 ( ; ) 1

1 0( ; )

Then the solution of (30) is represented by

2( ) = 2( )
=0

0

˜ 2( 1 ) ˜ 2( +1 ) +1 1

it follows that

2( ) 2( ) exp 2( )

By (4) and (6) we see that

( )
( )2

( )
(ln ( ) 1)

and

( )
( )3

( )2
(ln ( ) 1)2

Therefore, we have

1 ( ) + 2 ( )
( )

( )2
(ln ( ) 1)2 +

( )
2 ( )3

(ln ( ) 1)3

( )

( )2
(ln ( ) 1)2

it follows that

2( )
( )

( )2
(ln ( ) 1)2

(ln ( ) 1)2

( )

(ln ( ) 1)2

( )

2 ( )

( )2
(ln ( ) 1)2 1

(ln ( ) 1)2

( )

(ln ( ) 1)2

( )

Thus, we obtain

(31) 2( ) 2( ) exp
(ln ( ) 1)2

( )

(ln ( ) 1)2

( )

for any +
1.
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3.7. Estimate in ZH 1. We restrict ourselves that ; otherwise, we
have the same estimates below in the analogy of the present case.

By (10), (26) and noting the definition of 1 we have

( ; ) =
( )

4 ( )2
( ) ( ) + ( ) ( )

4 ( )2 ( )2

1

( ) ( )
+

1

( ) ( ) ( ) ( )

= 1

Thus 2( ) is uniformly invertible on with respect to for large .
By (4), (10) and (26) we have

( ) ( )
( )

( )
and ( ) ( )

( )

( )

2

Hence we obtain

1 ( ) + 2 ( )
( )

( ) ( )2
+

( )
2 ( )2 ( )3

( )

( ) ( )2
1 +

1

( ) ( )

( )

( ) ( )2

Noting (4) we see that

( ( ) ( )1 2) = ( ) ( )1 2 ( )

( )

( )

2 ( )
( ) ( )

2 ( )1 2
( 1 1) 0

for sufficiently small 0, it follows that ( ) ( )1 2 is monotone decreasing on
. Thus we obtain

( )

( ) ( )2

( )

( ) ( )2

1
1 2

( )

( )3 2

2
=

2

for any . Consequently, there exists a positive constant such that

(32) 2( ) 2( )

We easily see that the estimate (32) also holds for any+ +.
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3.8. Estimate in the whole zones. Let us introduce the following lemmas:

Lemma 3.2. There exists a positive constant 1 independent of such that

( )

( )

Proof. By (18) and (25) we have

=

Therefore, the lemma is proved if

(33) +

and

(34) +

We only prove (33); otherwise the proof is easier. By (18) andLemma 3.1 we have

+

it follows from (11) that

(35)
( ( ) ( )) +

+ ( ( ) ( )) + +

Let us consider the case that 0 and + ; otherwise the estimate (33)
is trivial. Denoting for 1 and 0 that

( )

( )
( + ) = and

( )

( )
( ) =

by (35) we have

1 + 1

+ 1
1 0

it follows that is bounded. Therefore, we obtain (33).

Lemma 3.3. The following equality and inequalities are established for large :

(36) 0( ; ) = 2 1( ; )
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and

(37)
1

2

( )

( )
0( ; ) 2( ; )

( )

( )
0( ; )

Proof. (36) is straightforward from the definition of0( ; ) and 1( ; ). We
note the equalities:

2( ) =
( )

( )
1( ) 1

2 ( ) 1
1 0( )

=
1

2(1 + ( )2)

( )

( )
1( )

1
1

( ) ( 0) ( 0)
( ) ( 0) + ( 0)

=
1

2(1 + ( )2)

( )

( )
(1 + ) ( ) ( 0) (1 ) ( 0)
(1 ) ( ) ( 0) + (1 + ) ( 0)

Recalling the estimate of ( ) in Section 3.6, ( ) can be taken arbitrarily small with
large . Thus (37) is proved.

By (27), (28), (31), (32), Lemma 3.2 and Lemma 3.3 we have

0 ; = 2 1 ; 2 lim
0

1( )

= 2 2
( 0) 2 + ( 0)

1 2
2 1

+;

0
+;

(38)

and

0
+
+1;

2
+
+1 exp

ln +
+1

1 2

+
+1

ln
1 2

0 ;
(39)

Suppose that +1
+
+1 and 0, that is, . Then by (27), (38), (39)

Lemma 3.2 and Lemma 3.3 we have the following estimates:

0( ; ) = 2 1
+
+1 2 1

+
+1

+
+1 = 0

+
+1;

2 2
+
+1 exp

ln +
+1

1 2

+
+1

ln
1 2

0 ;

2 3
+
+1 exp

ln +
+1

1 2

+
+1

ln
1 2

0
+;
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...

2 2
+
+1

+ +
2

+
1

1 1
+
1

exp
=1

ln +
+1

1 2

+
+1

ln
1 2

0( +
1 ; )

2 2 1
+
+1
+
1

exp
ln +

+1
1 2

+
+1

0( ; )

2 2 exp
(ln ( ) 1)2

( )
0( ; )

exp( ( +(ln ) )) 0( ; )

where we note that 0 for small . Analogously, we have the same estimate if
+

1 and 0. Thus we obtain

0( ; ) exp( ( + (ln ) )) 0( ; )

for any 0. On the other hand, by (24) we have

0( ; ) = 2 1( ) exp( (ln ) ) 1( ) exp( (ln ) ) 0( ; )

for 0. Noting the inequalities

exp (ln ln ( ) 1) sup
ln

ln ln ( ) 1

exp (ln ln ( ) 1) sup
ln

ln ln ( ) 1

exp (ln ln ) sup
ln

ln ln ( ) 1
= (ln )sup ln ln ln ( ) 1

we obtain

0( ; ) exp( (ln ) ) 0( ; )

for any [0 ] and any larger number . Thus by (19) we obtain (7).

REMARK 3.2. We have never considered for non-large , but such a case does
not bring any problem for the loss of regularity.
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3.9. Optimality. Finally, we shall prove the optimality of the estimate (7) on
the assumption (6). Precisely, we shall give an example of ( )= ( ) ( ) and initial
data satisfying all the assumptions of Theorem 2.1, but the estimate (8) does not hold
for any positive constants 0, 1 and .

Main idea of the proof is based on [11] by Tarama. He proved thatfor the coeffi-
cient ( ) = ( 1), where is a positive periodic function, there exist initial data
such that (1) is not well-posed since 1 2. In the other words, if = 1 1,
then there exist initial data such that the estimate (7) with= 1 dose not hold for any
positive constants 0 and 1. Here we remark that we only see that the estimate (7)
with = 1 dose not hold even if 1 by [11]. On the other hand, our theorem
asserts that the optimality of (7) is true without any restriction to .

Let us consider the Cauchy problem

(40)
( 2 + ( )2 ( 1)2 2) ( ) = 0 ( ) [0 ] R

( ) = 0( ) ( ) = 1( ) R

where ( ) = , 1 and is a positive 1-periodic function. By setting := 1
and ( ) = ( ; ) := ( ) we have

(41)
2

2
+ 4 ( 1)2 ( )2 2 ( ) = 0

Let us understand now the ordinary differential equation (41) as a small perturbation
of the simpler equation

(42)
2

2
+ 0 ( )2 ( ) = 0

where 0 is a positive constant; indeed, such a equation of Hill’s type is studied well
and the properties will help to solve our problem.

The second order scalar equation (42) is rewritten as the following first order sys-
tem:

( ; 0) =
0 0 ( )2

1 0
( ; 0)

where ( 0) is 2 2-matrix valued function. Then one can describe a result of
Floquet theory as follows:

Lemma 3.4 (Floquet theory). Let ( ) be a continuous, 1-periodic and non-
constant function, and

( 0 0) =
1 0
0 1
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There exists a positive real number0 such that ( 0 + 1 0) has the eigenvalues
and 1 satisfying 1. Here we remark that the eigenvalues of( 0 + 1 0) are
independent of 0 since ( ) is 1-periodic.

For a proof of this lemma refer to [9] Chapter 1, for instance.
Let us prepare some properties to apply Lemma 3.4 for our problem.

Lemma 3.5. For any given real number [0 1) there exists a positive con-
stant such that

4 ( 1)2 ( ) 4 (( ) 1)2 5 ( 1)2

for any 1 and 0 1 .

Proof. By mean value theorem there exist constants1 2 3 (0 1) such that

4 ( 1)2 ( ) 4 (( ) 1)2

4 ( 1 ) 5 2 + 2 ( ) 4( 2 ) 1 2( 2 )

4 ( ) 5 2 + 2 ( ) 5 2( )

5 2 2( ) ( 1)2

5 2 ( 3 ) 1
( 1)2

5 2
1

( 1)2

5 ( 1)2

where the constant depends only on . Thus the lemma is proved.

Let 0 be a positive real number and define = (0) be the solution to

4 1 2 2 = 0

Here we remark that for large we have

1

2
ln ln

Let be a small positive real number satisfying 1 1 0, and 0
(ln )1 1 . Noting 1 for [0 1) with large we have from
Lemma 3.5 that

(43) 0 ( ) 4 2( ) 2 (ln )

for large .
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By similar proof for the estimate (43) we have

max
[ 1 0]

( 1 + ) 4 2( 1+ ) ( + ) 4 2( + ) 2

(ln )1 1
(44)

for any satisfying 1 (ln )1 1 .
Let us prove now the following proposition:

Proposition 3.1. Let 0 be a large integer satisfying0 1 (ln )1 1
0

for a given large . Then there exist initial data( ( ) ( )), positive constants

1 = 1( ) and 2 = 2( ) such that the solution ( ) of (41) satisfies the estimate

( 0 1) + ( 0 1) 1 exp( 2(ln ))(1 ) 1

Proof. Let be a non-negative integer. We consider the following first order sys-
tem:

( 0) =
0 ( + ) 4 ( + )2 ( + )2 2

1 0
( 0)

( 0 0) =
1 0

0 1

Then we have the following representation:

( 0 1)

( 0 1)
= 0( 1 0) 0 1( 1 0) 0( 1 0)

( )

( )

We set

( 1 ) = 11 12

21 22
and ( 1 0) = 11( ) 12( )

21( ) 22( )

and denote their eigenvalues by , and respectively. Here we note the following
lemma:

Lemma 3.6. For any 1 (ln )1 1 with large we have the
followings:

(45) min 1
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and

(46) max ( + 1) ( ) + +1 (ln )1 1

Proof. Noting 11+ 22 = + 1 we have 11 + 22
1 , from

which follows

max 11 22
1

2
1

Let us assume that

11
1

2
1 ;

the other case can be treated similarly. Then we also have

22
1 1

2
1

The estimate (43) implies that max [ 1 0] ( ) is bounded, and

max
[ 1 0]

( 0) ( + ) (ln )

for large . Thus we have the estimate (45). By (44) we also havethe estimate (46).

Let us set

=

12( )

11( )
1

1 21( )
1

22( )

Then we have

( 1 0) =
0

0 1

it follows that

0( 1 0) 0 1( 1 0) 0( 1 0) = 0 0
1

0

where

0 = 0 0
0 1

0

( + 0)
0 1 0
0 1

0 1
( + 0 1) ( + 1) 0 0

0 1
0
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and

+1 = 1
+1

Let us denote by (1 1) the (1 1) element of0. By Lemma 3.6 we have +
1 and +1 (ln )1 1 . Thus we obtain

(1 1)
0

=1

0(ln )1 1
0

=0

(ln )
0

=0

Therefore, for large we obtain

(1 1)
0

=1

1

2

0

=0

it follows from (45) that

(1 1)
1

2

0

=0

1

2

1

2
( + 1)

0

exp( (ln )1 1 )

This estimate implies the estimate of Proposition 3.1.

We set = 1 and = ( 1) 1. Noting the inequality

2 =
1

0

2

2 ( )
1

0 min ( 1)
( )

we have

( 1) + ( 1) = ( ) + ( ) + 1 ( )

2 ( ) + 2 ( )

( ) + ( ) ( )

for any large . Therefore, by Proposition 3.1 and Lemma 3.6 wehave the following:

Corollary 3.1. Let 1. For any given and for any small positive real num-
ber there exist0, 1 satisfying0 1 0 , positive constants 0, 1, and initial
data ( 0( ) 1( )) such that the solution to(40) satisfies

( 1) + ( 1) ( 1
1 ) ( 1) 0

1(ln )1 1
( 0)
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This corollary concludes the proof of Theorem 2.1.

ACKNOWLEDGEMENT. The author thanks the referee for his kindly and useful
comments.
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