350 research outputs found

    LNCS

    Get PDF
    We define the model-measuring problem: given a model M and specification φ, what is the maximal distance ρ such that all models Mâ€Č within distance ρ from M satisfy (or violate) φ. The model measuring problem presupposes a distance function on models. We concentrate on automatic distance functions, which are defined by weighted automata. The model-measuring problem subsumes several generalizations of the classical model-checking problem, in particular, quantitative model-checking problems that measure the degree of satisfaction of a specification, and robustness problems that measure how much a model can be perturbed without violating the specification. We show that for automatic distance functions, and ω-regular linear-time and branching-time specifications, the model-measuring problem can be solved. We use automata-theoretic model-checking methods for model measuring, replacing the emptiness question for standard word and tree automata by the optimal-weight question for the weighted versions of these automata. We consider weighted automata that accumulate weights by maximizing, summing, discounting, and limit averaging. We give several examples of using the model-measuring problem to compute various notions of robustness and quantitative satisfaction for temporal specifications

    Field theory of directed percolation with long-range spreading

    Get PDF
    It is well established that the phase transition between survival and extinction in spreading models with short-range interactions is generically associated with the directed percolation (DP) universality class. In many realistic spreading processes, however, interactions are long ranged and well described by L\'{e}vy-flights, i.e., by a probability distribution that decays in dd dimensions with distance rr as r−d−σr^{-d-\sigma}. We employ the powerful methods of renormalized field theory to study DP with such long range, L\'{e}vy-flight spreading in some depth. Our results unambiguously corroborate earlier findings that there are four renormalization group fixed points corresponding to, respectively, short-range Gaussian, L\'{e}vy Gaussian, short-range DP and L\'{e}vy DP, and that there are four lines in the (σ,d)(\sigma, d) plane which separate the stability regions of these fixed points. When the stability line between short-range DP and L\'{e}vy DP is crossed, all critical exponents change continuously. We calculate the exponents describing L\'{e}vy DP to second order in Ï”\epsilon-expansion, and we compare our analytical results to the results of existing numerical simulations. Furthermore, we calculate the leading logarithmic corrections for several dynamical observables.Comment: 12 pages, 3 figure

    Multifractal properties of resistor diode percolation

    Full text link
    Focusing on multifractal properties we investigate electric transport on random resistor diode networks at the phase transition between the non-percolating and the directed percolating phase. Building on first principles such as symmetries and relevance we derive a field theoretic Hamiltonian. Based on this Hamiltonian we determine the multifractal moments of the current distribution that are governed by a family of critical exponents {ψl}\{\psi_l \}. We calculate the family {ψl}\{\psi_l \} to two-loop order in a diagrammatic perturbation calculation augmented by renormalization group methods.Comment: 21 pages, 5 figures, to appear in Phys. Rev.

    Nonequilibrium wetting

    Full text link
    When a nonequilibrium growing interface in the presence of a wall is considered a nonequilibrium wetting transition may take place. This transition can be studied trough Langevin equations or discrete growth models. In the first case, the Kardar-Parisi-Zhang equation, which defines a very robust universality class for nonequilibrium moving interfaces, with a soft-wall potential is considered. While in the second, microscopic models, in the corresponding universality class, with evaporation and deposition of particles in the presence of hard-wall are studied. Equilibrium wetting is related to a particular case of the problem, it corresponds to the Edwards-Wilkinson equation with a potential in the continuum approach or to the fulfillment of detailed balance in the microscopic models. In this review we present the analytical and numerical methods used to investigate the problem and the very rich behavior that is observed with them.Comment: Review, 36 pages, 16 figure

    The non-equilibrium phase transition of the pair-contact process with diffusion

    Full text link
    The pair-contact process 2A->3A, 2A->0 with diffusion of individual particles is a simple branching-annihilation processes which exhibits a phase transition from an active into an absorbing phase with an unusual type of critical behaviour which had not been seen before. Although the model has attracted considerable interest during the past few years it is not yet clear how its critical behaviour can be characterized and to what extent the diffusive pair-contact process represents an independent universality class. Recent research is reviewed and some standing open questions are outlined.Comment: Latexe2e, 53 pp, with IOP macros, some details adde

    Non equilibrium steady states: fluctuations and large deviations of the density and of the current

    Full text link
    These lecture notes give a short review of methods such as the matrix ansatz, the additivity principle or the macroscopic fluctuation theory, developed recently in the theory of non-equilibrium phenomena. They show how these methods allow to calculate the fluctuations and large deviations of the density and of the current in non-equilibrium steady states of systems like exclusion processes. The properties of these fluctuations and large deviation functions in non-equilibrium steady states (for example non-Gaussian fluctuations of density or non-convexity of the large deviation function which generalizes the notion of free energy) are compared with those of systems at equilibrium.Comment: 35 pages, 9 figure

    Ballistic Annihilation

    Full text link
    Ballistic annihilation with continuous initial velocity distributions is investigated in the framework of Boltzmann equation. The particle density and the rms velocity decay as c=t−αc=t^{-\alpha} and =t−ÎČ=t^{-\beta}, with the exponents depending on the initial velocity distribution and the spatial dimension. For instance, in one dimension for the uniform initial velocity distribution we find ÎČ=0.230472...\beta=0.230472.... We also solve the Boltzmann equation for Maxwell particles and very hard particles in arbitrary spatial dimension. These solvable cases provide bounds for the decay exponents of the hard sphere gas.Comment: 4 RevTeX pages and 1 Eps figure; submitted to Phys. Rev. Let

    Jacobson generators, Fock representations and statistics of sl(n+1)

    Get PDF
    The properties of A-statistics, related to the class of simple Lie algebras sl(n+1) (Palev, T.D.: Preprint JINR E17-10550 (1977); hep-th/9705032), are further investigated. The description of each sl(n+1) is carried out via generators and their relations, first introduced by Jacobson. The related Fock spaces W_p (p=1,2,...) are finite-dimensional irreducible sl(n+1)-modules. The Pauli principle of the underlying statistics is formulated. In addition the paper contains the following new results: (a) The A-statistics are interpreted as exclusion statistics; (b) Within each W_p operators B(p)_1^\pm, ..., B(p)_n^\pm, proportional to the Jacobson generators, are introduced. It is proved that in an appropriate topology the limit of B(p)_i^\pm for p going to infinity is equal to B_i^\pm, where B_i^\pm are Bose creation and annihilation operators; (c) It is shown that the local statistics of the degenerated hard-core Bose models and of the related Heisenberg spin models is p=1 A-statistics.Comment: LaTeX-file, 33 page

    Quasi-stationary regime of a branching random walk in presence of an absorbing wall

    Full text link
    A branching random walk in presence of an absorbing wall moving at a constant velocity vv undergoes a phase transition as the velocity vv of the wall varies. Below the critical velocity vcv_c, the population has a non-zero survival probability and when the population survives its size grows exponentially. We investigate the histories of the population conditioned on having a single survivor at some final time TT. We study the quasi-stationary regime for v<vcv<v_c when TT is large. To do so, one can construct a modified stochastic process which is equivalent to the original process conditioned on having a single survivor at final time TT. We then use this construction to show that the properties of the quasi-stationary regime are universal when v→vcv\to v_c. We also solve exactly a simple version of the problem, the exponential model, for which the study of the quasi-stationary regime can be reduced to the analysis of a single one-dimensional map.Comment: 2 figures, minor corrections, one reference adde

    Nonequilibrium Steady States of Matrix Product Form: A Solver's Guide

    Full text link
    We consider the general problem of determining the steady state of stochastic nonequilibrium systems such as those that have been used to model (among other things) biological transport and traffic flow. We begin with a broad overview of this class of driven diffusive systems - which includes exclusion processes - focusing on interesting physical properties, such as shocks and phase transitions. We then turn our attention specifically to those models for which the exact distribution of microstates in the steady state can be expressed in a matrix product form. In addition to a gentle introduction to this matrix product approach, how it works and how it relates to similar constructions that arise in other physical contexts, we present a unified, pedagogical account of the various means by which the statistical mechanical calculations of macroscopic physical quantities are actually performed. We also review a number of more advanced topics, including nonequilibrium free energy functionals, the classification of exclusion processes involving multiple particle species, existence proofs of a matrix product state for a given model and more complicated variants of the matrix product state that allow various types of parallel dynamics to be handled. We conclude with a brief discussion of open problems for future research.Comment: 127 pages, 31 figures, invited topical review for J. Phys. A (uses IOP class file
    • 

    corecore