
From Model Checking to Model Measuring?

Thomas A. Henzinger and Jan Otop

IST Austria

Abstract. We define the model-measuring problem: given a model M
and specification ϕ, what is the maximal distance ρ such that all models
M ′ within distance ρ from M satisfy (or violate) ϕ. The model mea-
suring problem presupposes a distance function on models. We concen-
trate on automatic distance functions, which are defined by weighted
automata. The model-measuring problem subsumes several generaliza-
tions of the classical model-checking problem, in particular, quantitative
model-checking problems that measure the degree of satisfaction of a
specification, and robustness problems that measure how much a model
can be perturbed without violating the specification. We show that for
automatic distance functions, and ω-regular linear-time and branching-
time specifications, the model-measuring problem can be solved. We use
automata-theoretic model-checking methods for model measuring, re-
placing the emptiness question for standard word and tree automata by
the optimal-weight question for the weighted versions of these automata.
We consider weighted automata that accumulate weights by maximizing,
summing, discounting, and limit averaging. We give several examples of
using the model-measuring problem to compute various notions of ro-
bustness and quantitative satisfaction for temporal specifications.

1 Introduction

Model-checking techniques have proved to be very useful in automatic verifica-
tion. Typically, the verified system is modeled as a transition system, the desired
properties are specified by a formula in a temporal language (Linear Temporal
Logic [LTL], Computation Tree Logic[CTL]) or an ω-automaton, and a model-
checking algorithm decides whether the model is correct with respect to the
specification. However, knowing whether the model is correct or not is often
insufficient.

Consider the TCP handshake protocol, which is used to establish a connection
between a client and a server. First, the client sends a SYN packet to the server,
which replies with a SYN-ACK packet. Then, the client responds with an ACK
packet. A TCP connection is established, provided that the protocol terminated.

Termination of the protocol can be verified by the standard model-checking
techniques, when the communication channel is assumed to be reliable, that is,

? This work was supported in part by the Austrian Science Fund NFN RiSE (Rigorous
Systems Engineering) and by the ERC Advanced Grant QUAREM (Quantitative
Reactive Modeling).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/268226314?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

every sent packet is delivered in the next step. Certain faults, such as “the first
server response SYN-ACK gets lost”can be encoded in the model. But, this raises
doubts whether the model includes all communication faults. Another approach
would be to use fairness assumptions, for example “if infinitely many packets are
sent, infinitely many packets will be delivered”. But, such assumptions may be
too weak to guarantee termination of the protocol. We propose a more refined,
quantitative approach.

We assume that any packet may get lost, but we ask quantitative questions:
What is the maximal number of lost packets tolerated by the protocol? What is
the maximal ratio of lost packets that guarantees liveness of the system? Such
questions are instances of the model-measuring problem.

The model-measuring problem asks, given a model M and specification ϕ,
what is the maximal distance ρ such that all models M ′ within that distance
from M satisfy (or violate) ϕ. That distance ρ is called the stability radius.
Figure 1 presents a geometric interpretation of the stability radius in two cases,
a model M that satisfies the specification and a model N that violates it.

To determine the stability radius, it suffices to have a unary function that,
for a given transition system M ′, specifies its distance from M . Such a function,
called a similarity measure, is a sole input to the model-measuring problem.
As inputs are required to be finite, we are interested in automatic similarity
measures that are represented by weighted automata.

M

M ′
r1

N

r2

Fig. 1. A geometric interpretation of stability radii r1 of a model M and r2 of a model
N . The shaded area represents the family of models satisfying the specification.

In the TCP handshake protocol example, a model N encodes all executions
of the protocol over a reliable channel. Next, we define a similarity measure
dN so that dN (M) = k if M encodes the TCP handshake protocol that loses
(up to) k packets during its execution. Then, for the specification “the protocol
terminates”, the model-measuring problem answers the question, what is the
maximal number of lost packets that guarantees termination of the protocol?

We represent similarity measures by weighted automata; the representation
depends on the type of the specification. For example, in the branching-time
case, every transition system (model) M ′ admits the unique unrolling to a tree
tM ′ . Then, a weighted automaton Adist represents a similarity measure dM , if
for every transition system M ′, dM (M ′) equals to Adist(tM ′), the weight of tM ′

assigned by Adist.

Similarity measures represented by weighted automata are invariant with re-
spect to bisimilarity. This design choice is not accidental as we think that two
systems should be considered similar when their outputs are similar rather than
when the internal structures are similar. After all, we would consider two dif-
ferent implementations of the same algorithm as similar rather than two similar
programs that implement different algorithms.

Having an automatic representation of dM , we can solve the model-measuring
problem. Returning to the branching-time case, a (qualitative) automata-theoretic
CTL model-checking procedure works as follows. It translates ¬ϕ and M to ω-
tree automata A¬ϕ,AM , where A¬ϕ recognizes the set of all trees that satisfy ¬ϕ
and AM accepts only a single tree, the unrolling of M . Then, it asks for empti-
ness of L(A¬ϕ×AM) = L(A¬ϕ)∩L(AM). In our approach, we replace AM by a
weighted ω-tree automaton Adist representing dM , and generalize the emptiness
question to its weighted counterpart, the optimal-weight question. That question
asks for the infimum over weights of all ω-trees (ω-words) accepted by a weighted
ω-tree automaton. Now, let ρ be the answer to the optimal weight question for
A¬ϕ ×Adist. It follows that for every ρ′ > ρ, there is a tree accepted by A¬ϕ of
weight at most ρ′, and every M ′, whose distance from M is less than ρ, satisfies
ϕ. Thus, ρ is the stability radius of ϕ in M . Virtually the same argument can
be repeated in the linear-time case using ω-automata and ω-words.

The contribution of this paper is two-fold. First, we define the model-measuring
framework (Section 3) and show that several problems studied in the literature
are special cases of the model-measuring problem. Second, we give a system-
atic approach to modeling similarity measures using weighted automata, and
corresponding algorithms based on the optimal-weight question for computing
them.

The paper is organized as follows. In Section 2 we recall the standard notions
of weighted and unweighted automata, define the optimal weight question and
discuss its complexity in various cases. In Section 3 we define the stability radius
of a model w.r.t. a specification and the model-measuring problem. We start with
general definitions of these notions, which are then specialized to the ω-regular
linear-time and branching-time settings, based on weighted automata. Finally,
in Section 4 we discuss in depth the modeling of similarity measures and give
several examples in each case.

Related work. In recent years, much attention has been given to quantita-
tive1 generalizations of the Boolean notion of correctness and the corresponding
quantitative verification questions [2, 3, 14, 15, 18]. Here we attempt to define a
unifying automata-theoretic framework to capture and compute various ways of
measuring model quantities. In particular, we have succeed in subsuming the
following approaches.

The robust satisfaction of an open system has been studied in [14, 18]. An
open system M robustly satisfies a CTL specification ϕ (according to [14]) if
and only if for every environment, given as an open system M ′, the composition

1 Note that we use the attribute “quantitative” in a non-probabilistic sense. We there-
fore restrict ourselves to list only non-probabilistic references.

M ‖ M ′ satisfies ϕ (refer to [14] for the formal definition of composition). The
model-measuring problem subsumes this notion of robustness (cf. Section 4).

The model-measuring problem can express mutations on circuits [17]. Indeed,
all mutations considered in [17] just modify transition relations of automata,
therefore they can be expressed by our hypervisor approach (cf. Example 24).
In consequence, the model-measuring problem subsumes vacuity [19], coverage
[10], and certain cases of fault tolerance [11].

Another approach to robustness of discrete systems has been presented in [3],
where the robustness distance has been defined. This robustness distance can be
expressed in our framework as well (cf. Proposition 25).

2 Preliminaries

A tree (ω-tree) t over Γ labeled by Σ is a pair (τ, L), where τ is a finite (infinite
for ω-trees) prefix-closed subset of Γ ∗ and L : τ 7→ Σ is a labeling function. For
σ ∈ τ , every extension σ · g of σ, where g ∈ Γ and σ · g ∈ τ , is a successor of σ in
(τ, L). We write σ ∈ t and t(σ) instead of σ ∈ τ and L(σ). We usually omit Γ .

A labeled transition system is a quadruple 〈S,Σ,E, s0〉, where S is a (finite or
infinite) set of states, Σ is an alphabet, E is a relation on S×Σ×S and s0 is an
initial state. All models considered in this paper are (finite or infinite) transition
systems. A word (or ω-word) w = a1a2 . . . is a trace of a labeled transition system
M if there is an (unlabeled) path s0s1 . . . in M such that for every i ∈ [1, |w|],
(si−1, ai, si) ∈ E. We say that an (ω-)tree (τ, L) (over S × (Σ ∪ {ε})) labeled
by Σ ∪ {ε} is the unrolling of a transition system M = 〈S,Σ,E, s0〉 if τ is the
union of all finite labeled paths 〈s0, ε〉〈s1, a1〉 . . . 〈sk, ak〉 through M such that
for every i ∈ [1, k], (si−1, ai, si) ∈ E, and L(〈s0, ε〉 . . . 〈sk, ak〉) = ak.

2.1 Automata

A (nondeterministic) automaton is a tuple (Σ,Q,Q0, δ, F), where Σ is an alpha-
bet, Q is a finite set of states, Q0 ⊆ Q is a set of initial states, δ ⊆ Q × Σ ×Q
is a transition relation and F is an acceptance condition (finite, Büchi, . . .).

A run π of an automaton A on w = a1a2 . . . is a sequence of states such that
π(0) ∈ Q0 and for every i ∈ [1, |w|], (qi−1, ai, qi) ∈ δ. A run π is accepting if it
satisfies the acceptance condition F , e.g., in the Büchi case: there is q ∈ F that
occurs infinitely often in π.

A (nondeterministic) (ω-)tree automaton with varying degree (bounded by
N) [20] is a tuple (Σ,Q,Q0, δ, F), where Σ is an alphabet, Q is a finite set of

states, Q0 ⊆ Q is a set of initial states, δ ⊆
⋃N
k=1(Q × Σ) × Qk is a transition

relation and F is an acceptance condition (finite, Büchi, parity, . . .).
A run π of an automaton A on an (ω-)tree t = (τ, L) is an (ω-)tree (τ, L′)

labeled by Q such that π(ε) ∈ Q0 and for every σ ∈ t, if deg(σ) = k and σ · g1,
. . . , σ ·gk are all successors of σ in t, then (π(σ), t(σ), 〈π(σ ·g1), . . . , π(σ ·gk)〉) ∈ δ.
A run π is accepting if it satisfies the acceptance condition F , e.g., in the Büchi
case: along every infinite path there is a state from F that occurs infinitely often.

A weighted (Büchi, parity, Büchi-tree, . . .) automaton is an automaton whose
transitions are labeled by natural numbers called weights. Formally, a weighted
automaton A is a tuple (Σ,Q,Q0, δ, F, C) such that (Σ,Q,Q0, δ, F) is an au-
tomaton and C : δ 7→ N.

A weighting scheme is a function that assigns real numbers, called weights,
to runs. The weight of an ω-word w (ω-tree t) assigned by the automaton A
according to a weighting scheme f , denoted by LfA(w), is the infimum of the set
of weights of all accepting runs ofA on the ω-word w (the ω-tree t) weighted by f .
ω-words (ω-trees) that are rejected by A have infinite weight. Often, a particular
weighting scheme is irrelevant in reasoning, as long as it is fixed through a proof;
in such cases we shall omit it.

The emptiness question for non-weighted automata extends to the following
question in the weighted case:

Definition 1. Let f be a weighting scheme. The optimal-weight question for f
asks, given a weighted automaton A, to compute the infimum of LfA(w) over all
ω-words (ω-trees).

Remark 2. The dual to the optimal-weight question is to find the supremum
of LfA(w) over all ω-words w. Its decision versions have been referred to as
the limitedness problem [21] or the universality problem for weighted automata
[7]. They are usually much harder than the optimal-weight problem (see [5] for
undecidability results).

2.2 Weighting schemes for ω-words

Let A be a weighted automaton and π be its run. Denote by wt(π, i) the weight
of the ith transition in π. We consider the following weighting schemes:

1. Sum(π) =
∑∞
i=1 wt(π, i), the sum,

2. Max(π) = max∞i=1 wt(π, i), the maximum,
3. Discλ(π) = (1− λ)

∑∞
i=1 λ

iwt(π, i), the discounted sum, where λ ∈ (0, 1) is
a discount factor,

4. LimAvg(π) = lim infk→∞
1
k

∑k
i=1 wt(π, i), the limit average.

These weighting schemes admit efficient algorithms computing the optimal-
weight question:

Theorem 3. ([13, 22]) Let f be one of Sum,Max,Discλ,LimAvg. The optimal-
weight question for f and a weighted Büchi automaton A can be computed in
polynomial time in |A|.

2.3 Weighting schemes for ω-trees

In the ω-tree case, we consider two families of weighting schemes, Sup and Acc.
The Sup weighing schemes are derived from ω-words weighting schemes; every
path in a run on an ω-tree is weighted according to an ω-words weighting scheme,

and the weight of the run is supremum over weights of its all paths. We con-
sider the following Sup weighting schemes: SupSum, SupMax, SupDiscλ and
SupLimAvg.

The Acc family is obtained by accumulating weights over all paths. Given
a run π over an ω-tree t and σ ∈ t, we define: (i) wt(π, σ) as the weight of a
transition at σ in the run π, (ii) the contribution of σ in π, denoted by µ(π, σ), as
follows: µ(π, ε) = 1, and for every successor σ · g of σ, µ(π, σ · g) = 1

deg(σ)µ(π, σ).

We define the following weighting schemes:

1. AccSum(π) =
∑
σ∈π µ(π, σ)wt(π, σ), the accumulated sum,

2. AccDiscλ(π) = (1−λ)
∑
σ∈π λ

|σ|µ(π, σ)wt(π, σ), the accumulated discounted
sum, where λ ∈ (0, 1) is a discount factor,

3. AccLimAvg(π) = lim infk→∞
1
k

∑
σ∈π,|σ|≤k µ(π, σ)wt(π, σ), the accumulated

limit average.

Theorem 4. ([1, 4, 6, 8, 9, 23]) Let f be one of SupSum,SupMax,SupDiscλ,
SupLimAvg,AccSum, AccDiscλ or AccLimAvg. The optimal-weight ques-
tion for f and a weighted Büchi-tree automaton A can be computed in polynomial
time in |A|.

ω-words
ω-trees

Sup Acc

Sum O(n logn) PTIME PTIME

Max O(n logn) PTIME —

Discλ PTIME PTIME(∗) PTIME

LimAvg PTIME PTIME(∗) PTIME

Table 1. The complexity of the optimal-weight question for weighted Büchi and Büchi-
tree automata. (∗) indicates that the algorithm work in polynomial time under assump-
tion that the weights are given in unary notation.

Remark 5. The optimal-weight question can be solved for parity ω-word and ω-
tree automata with all weighting schemes from Theorems 3 and 4. However, its
complexity in the parity case increases from PTIME to the complexity of solving
parity games.

2.4 Automatic (weighted) relations

The convolution of ω-words w1, w2, denoted by w1⊗w2, is an ω-word over Σ×Σ
such that the ith letter of w1 ⊗ w2 is a pair of the ith letters of w1, w2.

A weighted relation is a generalization of the usual relation by allowing the
characteristic function to range over R+ ∪ {∞}. A (binary) weighted relation
S is an automatic weighted relation if there is a weighted automaton AS that
computes S, i.e., for all w1, w2 ∈ Σ∗, w1Sw2 = AS(w1 ⊗ w2).

The notion of automatic weighted relations straightforwardly extends on ω-
trees.

3 The Model-Measuring Framework

Correctness of a system w.r.t. a specification is, like membership, a qualitative
property; the system is correct or not. However, membership of a point p in a
region R has a natural quantitative extension called the stability radius. It is
defined as the distance between p and the border of R (cf. Fig. 1). It has been
widely used in the decision-making community [16]. Assuming that we are given
a distance function d defined on transition systems, we adapt the stability radius
to the model-checking setting. Basically, we ask for stability radius of a transition
system in the region of all transition systems satisfying a specification.

The definitions in this section are independent of a particular logic. They
refer to a specification which is not yet instantiated. It will be instantiated in
Sections 3.1 and 3.2.

Definition 6. Let d be a distance defined on transition systems. For a transition
system M and a specification P , the stability radius of P in M (w.r.t. the
distance d), denoted by srd(M,P), is defined as follows:

(i) if M |= P , srd(M,P) = sup{ρ ≥ 0 : ∀M ′(d(M,M ′) < ρ⇒M ′ |= P)},
(ii) if M |= ¬P , srd(M,P) = srd(M,¬P),

(iii) otherwise, srd(M,P) = 0.

In order to determine the stability radius of P in M we only need to know
distances between a (fixed) M and other transition systems; it suffices to have
a unary function dM , defined as dM (M ′) = d(M,M ′), which encodes essential
information about M and d. We call such a function dM a similarity measure.
Observe that any function satisfying dM (M) = 0 and dM (M ′) ≥ 0 is a valid
similarity measure as we can find a distance d defining it. However, we are
interested only in similarity measures that are semantically defined, i.e., those
that depend only on the behavior of the transition system (the set of traces),
not on its structure.

We define the stability radius of P in M w.r.t. a similarity measure dM ,
srdM (M,P), as the stability radius w.r.t. any distance compatible with dM .

We define the model-measure on the basis of the stability radius by scaling
the value the stability radius from [0,∞] to [12 , 1] if M |= P , and [0, 12] otherwise.

Definition 7. The model-measuring problem is defined as follows: given a sim-
ilarity measure dM and a specification P , compute [P]dM defined as follows:

(i) if M |= P , [P]dM = 1− 2−srdM (M,P)−1 (∈ [12 , 1]),
(ii) if M |= ¬P , [P]dM = 1− [¬P]dM (∈ [0, 12]),

(iii) otherwise, [P]dM = 1
2 .

Consider a specification given by a temporal (LTL or CTL) formula ϕ.
The model-measure is compatible with conjunction and implication, i.e., [ϕ1 ∧
ϕ2]dM = min([ϕ1]dM , [ϕ2]dM) and ϕ1 ⇒ ϕ2 implies [ϕ1]dM ≤ [ϕ2]dM . Ob-
serve that for every similarity measure dM , [ϕ]dM = 1 if ϕ is a tautology, as
srdM (M,ϕ) =∞ and 1− 2−∞−1 = 1, and [ϕ]dM = 0 if ϕ is inconsistent. Values
of formulae that are neither tautologies nor inconsistent depend on the choice of
a similarity measure.

Example 8. Consider a transition system M modeling two parties communicat-
ing through a channel, where every sent packet is delivered in the next state.
We define a similarity measure dM , such that dM (M ′) = k if M ′ models two
parties that follow the same protocol as in M , but up to k packets sent through
the channel get lost. We shall return to this example in Section 4.

In the following, we discuss specialization of the model-measuring problem
for ω-regular linear-time and branching-time specifications.

3.1 Model measuring ω-regular linear-time specifications

An ω-regular linear-time specification P is a subset of Σω, the set of all cor-
rect traces. We assume that P is given by a Büchi automaton AP recognizing
its complement, i.e., an ω-word w violates P iff AP accepts w. E.g. a Linear
Temporal Logic (LTL) formula ϕ can be translated to a Büchi automaton A¬ϕ
recognizing ω-words that satisfy ¬ϕ. The automaton AP can be regarded as a
weighted automaton with all weights 0. Next, we say that a transition system M
satisfies a linear-time specification P if all its traces satisfy P , or equivalently,
the language of all traces of M and L(AP) are disjoint.

We proceed alike with similarity measures. We define similarity measures on
ω-words, then we extend the definition to transition systems.

Definition 9. A (linear-time) similarity measure dM is automatic iff there is a
weighted automaton Adist and a weighting scheme f ∈ {Sum,Max,Discλ,LimAvg}
such that for every transition system M ′, dM (M ′) = sup{Afdist(w) : w is a trace
of M ′}.

Example 10. Consider a finite transition system M . Let Adist be a weighted
automaton that contains M and has a single additional state q⊥ /∈M . There are
transitions, labeled by every letter, from every state of Adist to q⊥; each such
transition has the weight 1. The state q⊥ is accepting, but it has only self-loops of
weight 1. All transitions of M are weighted by 0. The automaton Adist weighted
by Discλ (with λ ∈ (0, 1)) assigns the weight 0 to all traces of M . If w is not
a trace of M , ADiscλ

dist (w) = (1 − λ)
∑∞
i=k λ

i = λk, where k is the length of the
longest common prefix of w and any trace of M . Observe that for a transition
system M ′, dM (M ′) is equal to λK , where K is the maximal number such that
every trace of M ′ agree on the first K letters with some trace of M .

We discuss constructions of automatic similarity measures in Section 4. Now,
we assume that a weighted automaton Adist computing dM is given and we show
how to use it to compute [P]dM .

Consider the usual model-checking problem for LTL specifications: given
a transition system M and an LTL formula ϕ, decide whether M |= ϕ. An
automata-based model-checking procedure constructs two ω-automata: AM ac-
cepting all traces of M , and A¬ϕ accepting all ω-words that violate ϕ. ω-
words accepted by both, AM and A¬ϕ, are counterexamples to the statement
M |= ϕ. Thus, the model-checking problem M |= ϕ reduces to emptiness of

L(AM ×A¬ϕ) = L(AM)∩L(A¬ϕ). In order to compute the model-measure, we
follow the same scheme.

Since the specification is already given by the automaton AP recognizing its
complement, we simply replace AM with Adist and compute the optimal-weight
of the cross product Adist × AP . This automaton is defined as the usual cross
product of Büchi automata, but the weight of every transition is the weight of its
first component in Adist. Observe that Adist ×AP (w) = Adist(w) if w ∈ L(AP)
and Adist×AP (w) =∞ otherwise. The optimal-weight of Adist×AP is precisely
the value of srdM (M,P). Indeed, assume that M |= P and consider, for every
ρ > 0, an (infinite) transition systems Mρ, such that the traces of Mρ are all
ω-words w with Adist(w) ≤ ρ. Clearly, dM (Mρ) = ρ. Observe that if an ω-word
w has the weight ρ assigned by Adist, i.e., Adist(w) = ρ, and AP accepts w,
then Mρ violates P and srdM (M,P) ≤ ρ. Conversely, if AP rejects all ω-words
w with Adist(w) < ρ, then for every ρ′ < ρ, Mρ′ |= P and srdM (M,P) ≥ ρ. The
case where M |= ¬P is symmetric, and the case M 6|= P and M 6|= ¬P is trivial.

Theorem 11. Assume that (linear-time) similarity measures and ω-regular linear-
time specifications are given by weighted Büchi automata with one of the weight-
ing schemes Sum,Max,Discλ or LimAvg. Then, the model-measure [P]dM can
be computed in polynomial time in the size of both automata representing dM
and P .

The size of Adist×AP is quadratic in |Adist|+ |AP |. Since the optimal-weight
question for Discλ,LimAvg weighting schemes is equivalent to computing the
value of the optimal strategy in a Markov decision process, and the latter is solved
by linear programming, the optimal-weight questions for Discλ and LimAvg
are solved in polynomial time assuming that arithmetical operations have con-
stant costs. The question, whether linear programming, and in consequence the
optimal-weight questions for Discλ and LimAvg, admit polynomial-time algo-
rithms when costs of arithmetic operations are proportional to lengths of their
arguments, is still open.

3.2 Model measuring ω-regular branching-time specifications

An ω-regular branching-time specification P is a subset of ω-trees labeled by Σ,
the set of all valid computation trees. We assume that P is given by a Büchi-tree
automaton AP recognizing the set of all ω-trees that violate P . The automaton
AP is an automaton over trees with varying (but bounded) degree. It can be
regarded as a weighted automaton with all weights 0. Next, we proceed as in the
linear-time case.

Surprisingly, the definition of similarity measure is simpler in the branching-
time than in the linear-time case. Since every transition system M ′ has the
unique unrolling to an ω-tree tM ′ , the similarity measure of a transition system
M ′ is defined directly as the weight of its unrolling tM ′ .

Definition 12. A (branching-time) similarity measure dM is automatic iff there
is a weighted ω-tree automaton Adist and a weighting scheme f from Theorem
4 such that for every transition system M ′, dM (M ′) = Afdist(tM ′).

Again, by virtually the same argument as in the linear-time case, the optimal
weight of Adist ×AP is equal to srdM (M,P).

Theorem 13. Assume that (branching-time) similarity measures and ω-regular
branching-time specifications are given by weighted Büchi-tree automata. Then,
the model-measure [P]dM can be computed in polynomial time in the size of both
automata representing dM and P .

Remark 14. Recall that we assume that weights are given in unary notation. It
is an open problem whether mean-payoff and discounted-payoff games, and in
consequence the optimal-weight question for SupDiscλ and SupLimAvg, admit
polynomial-time algorithms if weights are given in binary notation.

Remark 15. Let ϕ be a CTL formula. In order to compute the model-measure of
ϕ, ϕ has to be translated to a non-deterministic Büchi-tree automaton A¬ϕ rec-
ognizing all ω-trees (of bounded degree) that violate it. Such an automaton has
exponential size in |ϕ|. Thus, Theorem 13 yields an exponential-time algorithm
computing the model-measure of a CTL formula, whereas CTL model checking
has a linear-time algorithm. Unfortunately, the exponential blow-up cannot be
avoided as the satisfiability problem for CTL, which is EXPTIME-complete,
reduces to model-measuring for CTL (even with a fixed dM). Consider a simi-
larity measure dM , which is finite for every transition system based on the full
binary ω-tree. Observe that [ϕ]dM < 1 iff ¬ϕ is satisfiable over the class of mod-
els based on the full binary ω-tree. The satisfiability problem for CTL, even
restricted to models based on the full binary ω-tree, is EXPTIME-complete.

Remark 16. Theorem 13 can be generalized to parity tree automata. The optimal-
weight question can be solved for parity automata over the same weighting
schemes as in the Büchi case. The complexity of those algorithms is higher,
but it matches the complexity of solving parity games.

3.3 Undecidable model measuring

We have shown that the model-measure of a linear (or branching-time) specifi-
cation can be computed for automatic similarity measures. It may seem to be a
narrow class of similarity measures, but even slight extensions of this class make
the model-measuring problem undecidable.

Let Σ be an alphabet and let S be a relation on Σ ×Σ denoting admissible
pairs of letters. Consider a function fSM such that fSM (w) is the minimal number
of transpositions of admissible adjunct letters of w necessary to transform w to
a trace of M . The function fSM is a variant of sorting, where some letters cannot
be swapped. Although fSM cannot be computed by an automaton, as it requires
unbounded memory, for every ω-word w, fSM (w) is computable in polynomial
time.

Theorem 17. There exist M,S such that for the similarity measure defined as
dM (M ′) = sup{fSM (u) : u is a trace of M ′}, the problem: given an LTL formula
ϕ, decide whether [ϕ]dM = 1, is undecidable.

4 Similarity Measures for ω-regular Specifications

In this section we present a systematic approach to the construction of automatic
similarity measures. They will be constructed from the transition system M by
relatively simple adjustments rather than modifications of M itself. The system
M is usually complex, therefore modifying its internal structure is a complicated
and error-prone task.

One way to construct similarity measures without modifying M itself is to
employ automatic weighted relations. Let AM be an automaton that recognizes
the set of traces of M and let R be an automatic weighted relation computed by
AR. A similarity measure dM , defined by dM (w) = inf{vRw : v is a trace of M}
on ω-words, and dM (M ′) = sup{dM (w) : w is a trace of M ′}, is an automatic
similarity measure. Indeed, consider a weighted automaton Adist that, while
running on the ω-word w, guesses a trace w of M on the fly and computes R by
simulating AR. Since the weight of an ω-word is the infimum over the weights
of its runs, Adist(w) = inf{vRw : v is a trace of M} and Adist computes dM .

Observe that Adist can be constructed from automata AM and AR in a
uniform way, i.e., independently of their internal structure. This is the main ad-
vantage of that approach, but this also makes it unsuitable. To see that, suppose
that an automatic weighted relation RE8 computes the similarity measure from
Example 8. After the first packet is lost, the system (from Example 8) is in the
state that is not reachable in a valid execution and a corrupt trace is not related
to any valid trace of M . Thus, an automaton computing RE8 would have to
simulate M . In consequence, it would have to remember all states of M , which
is precisely what we want to avoid.

We suggest a compromise between uniformity and expressiveness. In our
approach the structure of AM is unaffected, but its execution is governed by an
external component, called the hypervisor.

Definition 18. Let AM = (Σ,QM , Q0,M , δM , FM , CM) be a weighted automa-
ton. A hypervisor H for AM is a triple (AH , τH , ΓH) such that

• AH = (Σ,QH , Q0,H , δH , FH , CH) is a weighted automaton,
• τH : QH 7→ 2QM×Σ×QM ,
• ΓH : QH 7→ NQM×Σ×QM ,
• AH has an initial qI ∈ Q0,H , an idle state, such that τH [qI] = δM , ΓH [qI] =
CM and for every a ∈ Σ, AH has a transition (qI , a, qI) of weight 0.

The functions τH , ΓH determine the transition relation and cost function for
AM at each step. Intuitively, they should encode modifications applied to the
transition relation and cost function of AM rather than their complete descrip-
tions. E.g. blind a-transitions τH [qa] = {(q, b, q′) : (q, a, q′) ∈ δM , b ∈ Σ}, i.e.,
the automaton moves as it would read a, regardless of the actual letter. Having
δM , τH [qa] can be simply defined regardless of complexity of δM .

Let AM = (Σ,QM , Q0,M , δM , FM , CM) be a weighted automaton. For a hy-
pervisor H = (AH , τH , ΓH) with AH = (Σ,QH , Q0,H , δH , FH , CH), the semi-
direct product AM n H is a weighted generalized Büchi automaton (Σ,QH ×
QM , Q0,H ×Q0,M , δ, C, {F1, F2}) defined as follows:

• δ = {(〈q1, q2〉, a, 〈q′1, q′2〉) : a ∈ Σ, (q1, a, q′1) ∈ δH , (q2, a, q′2) ∈ τH [q1]},
• F1 = FH × QM and F2 = QH × FM , that is the automaton should visit

infinitely often accepting states of AM and those of AH ,
• C(〈q1, q2〉, a, 〈q′1, q′2〉) = CH(q1, a, q

′
1) + ΓH [q1](q2, a, q

′
2).

Observe that for every hypervisor H, and every AM recognizing the set of
traces of M , AM n H defines an automatic similarity measure related to M .
Indeed, due to existence of the idle state, the automaton AM n H can just
simulate AM , therefore for every trace of M , AM nH(w) = 0. Conversely, the
hypervisor method is complete, i.e., every automatic similarity measure dM is
computed by an automaton which is the semi-product of AM and some H.

Let dM be an automatic similarity measure and let Adist be an automaton
computing it. Consider a hypervisor H = (AH , τH , ΓH) such that AH can either
begin in qI and stay there forever, or it can begin in q0,dist, simulate the execution
of Adist, and neglect the automaton AM , i.e., for every q ∈ QH \{qI}, τH [q] is the
full relation and ΓH [q] is always 0. Then, for every w, AM nH(w) = Adist(w),
therefore AM nH computes dM .

However, this is a degenerate case. We rather focus on showing that the
hypervisor-based approach is a convenient and reasonably uniform (w.r.t. AM)
way of modeling similarity measures. In the following we shall give several ex-
amples supporting this thesis.

Observe that using aforementioned blind a-transitions one can simply define a
similarity measure dM (w) = inf{vRw : v is a trace of M} based on an automatic
weighted relation R. We leave that as an exercise for the reader.

Since the semi-direct product of a weighted automaton AM and H is again
a weighted automaton, this construction can be iterated ((AM n H) n H ′).
Although iteration can be avoided (Lemma 19), iterated definitions are often
simpler (cf. Example 20).

Lemma 19. Let A be a weighted automaton and H1, H2 be hypervisors for A
and A n H1. There effectively exists a hypervisor H3 such that for every w,
(AnH1) nH2(w) = AnH3(w).

Example 20. (Edit distance) We define the hypervisorDel = (ADel, τDel, ΓDel)
computing deletions of letters. The automaton ADel has two states, the idle
state qI , and the state qD responsible for deletion. In the deletion state qD, the
automaton AM ignores the input letter and remains in its current state, i.e.,
τDel[qD] = {(q, a, q) : q ∈ Q, a ∈ Σ}. The cost functions ΓH [qI], ΓH [qL] assign
0 weight to every transition of AM . Both, qI , qD, are initial states in AH and
δH is the full relation, i.e., δH = {(q1, a, q2) : q1, q2 ∈ QH , a ∈ Σ}. Transitions
from qI have weight 0 (in AH), whereas those from qD have weight 1. Clearly,
AM n Del computes a similarity measure such that the weight of an ω-word
w is the least number of deletions necessary to transform w to a trace of M .
AM nDel extends from ω-words to transition systems by taking supremum over
all traces of a transition system.

Similarly, one can define hypervisors Ins, Sub, Tra computing insertions, a
single letter substitutions or transpositions of adjacent letters necessary to trans-
form a given ω-word to an ω-word accepted by the hypervised automaton. Then,

the automaton Aedit, defined as (((M nDel)nSub)nTra)n Ins, computes the
edit distance between w and the set of traces of M . Indeed, if v, a trace of M ,
can be obtained from w by applying deletions, substitution, transpositions and
insertions, it can be obtained by applying the same number of these operations
in precisely that order, i.e., first deletions, next substitutions etc.

Example 21. (An unreliable channel) Consider the similarity measure dM
from Example 8. Assume that those parties, P1, P2, communicate through a
sheared variable a. Suppose that the transition relation for M is given symboli-
cally by a propositional formula N (p1p2a,p

′
1p

′
2a

′), where p1,p2,a are vectors
of propositional variables that represent the current state of P1, P2 and a, and
p′
1,p

′
2,a

′ represent their next state. All transitions in M have weight 0.
Consider a hypervisor H = (AH , τH , ΓH) such that AH has two states:

the idle state qI , and qL, the state of a packet being lost. The cost functions
ΓH [qI], ΓH [qL] assign 0 weight to every transition, which can be easily expressed
symbolically. Then τ [qI], τ [qL] are represented by N , and NL(p1p2a,p

′
1p

′
2a

′) ≡
∃a′′(N (p1p2a,p

′
1p

′
2a

′′) ∧ a = a′). Thus, when AH is in the state qD, AM ex-
ecutes the usual transition, but immediately after that a is being reset to its
previous value. Clearly, AM nH defines the similarity measure from Example 8.

Now, by employing different weighting schemes, we can ask a whole range of
questions. For Sum weighting scheme, the stability radius is the maximal number
of lost packets tolerated by the system, whereas for LimAvg weighting scheme
it gives the maximal average ratio of lost packets tolerated by the system.

Example 22. (Active environment) We can extend the idea from Example 21
to many processes where content of packets may be altered during communica-
tion. It is possible, as in the Dolev-Yao model for verification of cryptographic
protocols [12], to simulate a scenario where all communication channels are con-
trolled by the intruder who can intercept and forge packets. As it is unlikely that
the system is immune to arbitrary actions of the intruder, the model-measure
tells us how vulnerable the system is. E.g. the system works correctly as long as
no more than 5 packets are forged.

The hypervisor approach can be straightforwardly adapted to the branching-
time case. A (tree) hypervisor H is a triple (AH , τH , ΓH) such that AH is a
weighted automaton over ω-trees with varying (but bounded) degree and τH , ΓH
associate with each state of AH a (tree) transition relation and cost function.

Now, we shall present examples of branching-time similarity measures. The
first example is a class of measures inherited from the linear-time case. In the
linear-time case, dM (M ′) is defined as the supremum over weights of all traces of
M ′, therefore linear-time similarity measures naturally translate to branching-
time similarity measures over Sup weighting schemes. Indeed, consider an ω-word
automaton AwM . By extending the labeling of M to Σ ×Q, we can assume that
AwM is deterministic. Then, it can be transformed to an ω-tree automaton AtM
that accepts precisely those ω-trees whose paths are accepted by AwM . This idea
can be generalized to weighted tree automata over Sup weighting schemes to get
the following:

Proposition 23. Let M be a transition system and let AwM ,AtM be a word and
tree automata representing M . Every word hypervisor Hw can be translated to a
tree hypervisor Ht such that the similarity measures defined by AwM n Hw and
by AtM nHt agree on every transition system M ′ labeled by Σ ×QwH ×QwM .

In particular, Examples 20, 21, 22 can be adapted to the branching-time case.
Another feature of tree hypervisors, which is incompatible with the linear-

time case, is the ability to clone (or prune) a transition. Transition cloning at
a state can be easily implemented as follows. For every j ∈ {1, . . . , k}, the hy-

pervisor has a cloning state qc,j such that τH [qc,j] changes q0
a→ 〈q1, . . . , qk〉,

an original transition of AM , to q0
a→ 〈q1, . . . , qk, qj〉. In a similar way one can

define transition pruning. By combining cloning and pruning one can implement
the robustness notion from [14]. Indeed, the language of all execution trees of
M ‖ M ′, where branching degree of M ′ is bounded by B, can be obtained by
the combination of transition cloning (where each transition is cloned at most B
times), and arbitrary pruning. Thus, robustness of open systems defined in [14]
is a special case of model measuring.

Example 24. (Mutations) Removal of behaviors according to [17] is a special
case of our transition pruning. Generally, mutations that modify or add behaviors
can be straightforwardly implemented using the hypervisor approach. Thus, all
mutations considered in [17] can be expressed by similarity measures.

Finally, the model-measuring problem subsumes the robustness distance [3]:

Proposition 25. Let M be a transition system. There (effectively) exists a sim-
ilarity measure dM such that for every transition system M ′, the value of the
robustness distance from M to M ′ equals to 1− [M ′]dM .

5 Conclusions

We have defined the model-measuring problem, which generalizes several pre-
viously studied notions of robustness in verification. We have shown a way to
express several distances (edit distance; semantic distance: the number of lost
packets; etc.) in a convenient way, based on weighted automata, which admit
succinct symbolic representations.

The algorithms computing the model measure follow the same basic scheme
as standard automata-based model-checking algorithms. This suggests that our
method can be implemented on the basis of existing model-checking tools.

The model-measuring problem can be extended to the real-time case. It re-
mains to construct a variety of similarity measures in the timed case.

References

1. Franz Baader and Rafael Peñaloza. Automata-based axiom pinpointing. J. Autom.
Reasoning, 45(2):91–129, 2010.

2. Udi Boker, Krishnendu Chatterjee, Thomas A. Henzinger, and Orna Kupferman.
Temporal specifications with accumulative values. In LICS, pages 43–52. IEEE
Computer Society, 2011.

3. Pavol Cerný, Thomas A. Henzinger, and Arjun Radhakrishna. Simulation dis-
tances. Theor. Comput. Sci., 413(1):21–35, 2012.

4. Krishnendu Chatterjee and Laurent Doyen. Energy parity games. In ICALP (2),
volume 6199 of LNCS, pages 599–610. Springer, 2010.

5. Krishnendu Chatterjee, Laurent Doyen, Herbert Edelsbrunner, Thomas A. Hen-
zinger, and Philippe Rannou. Mean-payoff automaton expressions. CoRR,
abs/1006.1492, 2010.

6. Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative
languages. In CSL, pages 385–400, 2008.

7. Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Alternating
weighted automata. In FCT’09, pages 3–13. Springer-Verlag, 2009.

8. Krishnendu Chatterjee, Thomas A. Henzinger, Barbara Jobstmann, and Rohit
Singh. Measuring and synthesizing systems in probabilistic environments. In CAV,
volume 6174 of LNCS, pages 380–395. Springer, 2010.

9. Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin Jurdzinski. Mean-payoff
parity games. In LICS, pages 178–187. IEEE Computer Society, 2005.

10. Hana Chockler, Orna Kupferman, and Moshe Y. Vardi. Coverage metrics for
temporal logic model checking. In Tiziana Margaria and Wang Yi, editors, TACAS,
volume 2031 of LNCS, pages 528–542. Springer, 2001.

11. Sayantan Das, Ansuman Banerjee, Prasenjit Basu, Pallab Dasgupta, P. P.
Chakrabarti, Chunduri Rama Mohan, and Limor Fix. Formal methods for an-
alyzing the completeness of an assertion suite against a high-level fault model. In
VLSI Design, pages 201–206. IEEE Computer Society, 2005.

12. D. Dolev and A. C. Yao. On the security of public key protocols. In FOCS ’81,
pages 350–357, Washington, DC, USA, 1981. IEEE Computer Society.

13. Jerzy Filar and Koos Vrieze. Competitive Markov decision processes. Springer-
Verlag New York, Inc., New York, USA, 1996.

14. Orna Grumberg and David E. Long. Model checking and modular verification. In
CONCUR, volume 527 of LNCS, pages 250–265. Springer, 1991.

15. Thomas A. Henzinger. From boolean to quantitative notions of correctness. In
POPL ’10, pages 157–158, New York, USA, 2010. ACM.

16. D. Hinrichsen and N. K. Son. Stability radii of linear discrete-time systems and
symplectic pencils. Int. J. of Robust and Nonlinear Control, 1(2):79–97, 1991.

17. Orna Kupferman, Wenchao Li, and Sanjit A. Seshia. A theory of mutations with
applications to vacuity, coverage, and fault tolerance. In FMCAD, pages 1–9. IEEE,
2008.

18. Orna Kupferman and Moshe Y. Vardi. Robust satisfaction. In CONCUR, volume
1664 of LNCS, pages 383–398. Springer, 1999.

19. Orna Kupferman and Moshe Y. Vardi. Vacuity detection in temporal model check-
ing. STTT, 4(2):224–233, 2003.

20. Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. An automata-theoretic
approach to branching-time model checking. J. ACM, 47(2):312–360, March 2000.

21. Hing Leung. Limitedness theorem on finite automata with distance functions: an
algebraic proof. Theor. Comput. Sci., 81(1):137 – 145, 1991.

22. Mehryar Mohri. Semiring frameworks and algorithms for shortest-distance prob-
lems. Journal of Automata, Languages and Combinatorics, 7(3):321–350, 2002.

23. Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs.
Theor. Comput. Sci., 158(1&2):343–359, 1996.

