4,472 research outputs found

    Complexity in parametric Bose-Hubbard Hamiltonians and structural analysis of eigenstates

    Full text link
    We consider a family of chaotic Bose-Hubbard Hamiltonians (BHH) parameterized by the coupling strength kk between neighboring sites. As kk increases the eigenstates undergo changes, reflected in the structure of the Local Density of States. We analyze these changes, both numerically and analytically, using perturbative and semiclassical methods. Although our focus is on the quantum trimer, the presented methodology is applicable for the analysis of longer lattices as well.Comment: 4 pages, 4 figure

    Nuclear magnetic resonance measurements reveal the origin of the Debye process in monohydroxy alcohols

    Full text link
    Monohydroxy alcohols show a structural relaxation and at longer time scales a Debye-type dielectric peak. From spin-lattice relaxation experiments using different nuclear probes an intermediate, slower-than-structural dynamics is identified for n-butanol. Based on these findings and on diffusion measurements, a model of self-restructuring, transient chains is proposed. The model is demonstrated to explain consistently the so far puzzling observations made for this class of hydrogen-bonded glass forming liquids.Comment: 4 pages, 4 figure

    Engineering fidelity echoes in Bose-Hubbard Hamiltonians

    Full text link
    We analyze the fidelity decay for a system of interacting bosons described by a Bose-Hubbard Hamiltonian. We find echoes associated with "non-universal" structures that dominate the energy landscape of the perturbation operator. Despite their classical origin, these echoes persist deep into the quantum (perturbative) regime and can be described by an improved random matrix modeling. In the opposite limit of strong perturbations (and high enough energies), classical considerations reveal the importance of self-trapping phenomena in the echo efficiency.Comment: 6 pages, use epl2.cls class, 5 figures Cross reference with nlin, quant-phy

    Supersymmetry, Axions and Cosmology

    Full text link
    Various authors have noted that in particular models, the upper bound on the axion decay constant may not hold. We point out that within supersymmetry, this is a generic issue. For large decay constants, the cosmological problems associated with the axion's scalar partner are far more severe than those of the axion. We survey a variety of models, both for the axion multiplet and for cosmology, and find that in many cases where the cosmological problems of the saxion are solved, the usual upper bound on the axion is significantly relaxed. We discuss, more generally, the cosmological issues raised by the pseudoscalar members of moduli multiplets, and find that they are potentially quite severe.Comment: 27 pages, published version, some discussions clarifie

    Control of atomic currents using a quantum stirring device

    Full text link
    We propose a BEC stirring device which can be regarded as the incorporation of a quantum pump into a closed circuit: it produces a DC circulating current in response to a cyclic adiabatic change of two control parameters of an optical trap. We demonstrate the feasibility of this concept and point out that such device can be utilized in order to probe the interatomic interactions.Comment: 5 pages, 4 figures, uses epl2.cls, revised versio

    Spontaneous symmetry breaking of (1+1)-dimensional Ï•4\bf \phi^4 theory in light-front field theory (III)

    Full text link
    We investigate (1+1)-dimensional Ï•4\phi^4 field theory in the symmetric and broken phases using discrete light-front quantization. We calculate the perturbative solution of the zero-mode constraint equation for both the symmetric and broken phases and show that standard renormalization of the theory yields finite results. We study the perturbative zero-mode contribution to two diagrams and show that the light-front formulation gives the same result as the equal-time formulation. In the broken phase of the theory, we obtain the nonperturbative solutions of the constraint equation and confirm our previous speculation that the critical coupling is logarithmically divergent. We discuss the renormalization of this divergence but are not able to find a satisfactory nonperturbative technique. Finally we investigate properties that are insensitive to this divergence, calculate the critical exponent of the theory, and find agreement with mean field theory as expected.Comment: 21 pages; OHSTPY-HEP-TH-94-014 and DOE/ER/01545-6

    Latest results of the Tunka Radio Extension (ISVHECRI2016)

    Get PDF
    The Tunka Radio Extension (Tunka-Rex) is an antenna array consisting of 63 antennas at the location of the TAIGA facility (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) in Eastern Siberia, nearby Lake Baikal. Tunka-Rex is triggered by the air-Cherenkov array Tunka-133 during clear and moonless winter nights and by the scintillator array Tunka-Grande during the remaining time. Tunka-Rex measures the radio emission from the same air-showers as Tunka-133 and Tunka-Grande, but with a higher threshold of about 100 PeV. During the first stages of its operation, Tunka-Rex has proven, that sparse radio arrays can measure air-showers with an energy resolution of better than 15\% and the depth of the shower maximum with a resolution of better than 40 g/cm\textsuperscript{2}. To improve and interpret our measurements as well as to study systematic uncertainties due to interaction models, we perform radio simulations with CORSIKA and CoREAS. In this overview we present the setup of Tunka-Rex, discuss the achieved results and the prospects of mass-composition studies with radio arrays.Comment: proceedings of ISVHECRI2016 conferenc

    Anti-Periodic Boundary Conditions in Supersymmetric DLCQ

    Full text link
    It is of considerable importance to have a numerical method for solving supersymmetric theories that can support a non-zero central charge. The central charge in supersymmetric theories is in general a boundary integral and therefore vanishes when one uses periodic boundary conditions. One is therefore prevented from studying BPS states in the standard supersymmetric formulation of DLCQ (SDLCQ). We present a novel formulation of SDLCQ where the fields satisfy anti-periodic boundary conditions. The Hamiltonian is written as the anti-commutator of two charges, as in SDLCQ. The anti-periodic SDLCQ we consider breaks supersymmetry at finite resolution, but requires no renormalization and becomes supersymmetric in the continuum limit. In principle, this method could be used to study BPS states. However, we find its convergence to be disappointingly slow.Comment: 9pp, 2 figure
    • …
    corecore