1,569 research outputs found

    Living roots magnify the response of soil organic carbon decomposition to temperature in temperate grassland.

    Get PDF
    Increasing atmospheric carbon dioxide (CO2) concentration is both a strong driver of primary productivity and widely believed to be the principal cause of recent increases in global temperature. Soils are the largest store of the world's terrestrial C. Consequently, many investigations have attempted to mechanistically understand how microbial mineralisation of soil organic carbon (SOC) to CO2 will be affected by projected increases in temperature. Most have attempted this in the absence of plants as the flux of CO2 from root and rhizomicrobial respiration in intact plant-soil systems confounds interpretation of measurements. We compared the effect of a small increase in temperature on respiration from soils without recent plant C with the effect on intact grass swards. We found that for 48 weeks, before acclimation occurred, an experimental 3 °C increase in sward temperature gave rise to a 50% increase in below ground respiration (ca.0.4 kg C m−2; Q10=3.5), whereas mineralisation of older SOC without plants increased with a Q10 of only 1.7 when subject to increases in ambient soil temperature. Subsequent 14C dating of respired CO2 indicated that the presence of plants in swards more than doubled the effect of warming on the rate of mineralisation of SOC with an estimated mean C age of ca.8 y or older relative to incubated soils without recent plant inputs. These results not only illustrate the formidable complexity of mechanisms controlling C fluxes in soils, but also suggest that the dual biological and physical effects of CO2 on primary productivity and global temperature have the potential to synergistically increase the mineralisation of existing soil C

    Selective Deletion of Sodium Salt Taste during Development Leads to Expanded Terminal Fields of Gustatory Nerves in the Adult Mouse Nucleus of the Solitary Tract.

    Get PDF
    Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent "pruning" of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case sodium salt taste, play a role in the maturation of the terminal fields in the mouse brainstem. We found that the specific deletion of sodium salt taste during development produced terminal fields in adults that were dramatically larger than in control mice, demonstrating for the first time that sodium salt taste-elicited activity is necessary for the normal maturation of gustatory inputs into the brain

    Priming of the decomposition of ageing soil organic matter: concentration dependence and microbial control

    Get PDF
    The amount of carbon (C) stored in soil is an important regulator for the global climate and soil fertility and is the balance between formation and decomposition of soil organic matter (SOM). Decomposition of SOM can be powerfully affected by labile carbon (C) supplements in, for example, the rhizosphere. A stimulation of SOM mineralisation induced by labile C additions is termed priming', and the mechanisms for this phenomenon remain elusive. The most widely held explanation assigns priming to successional dynamics in r- and K-selected groups within the microbial community; groups which have also been connected with fungal (K-selected) and bacterial (r-selected) decomposers. New evidence has also suggested that recently formed SOM is particularly sensitive to priming. We investigated (i) the labile C concentration dependence of SOM mineralisation, (ii) the susceptibility of differently aged SOM to priming and (iii) if priming is due to bacterial or fungal growth dynamics. To create an age gradient of traceable SOM, we spiked a pasture soil using C-14 glucose, and subsampled plots 1day, 2months, 5months and 13months after application (i.e. SOM aged 1day - 13months). Glucose (0-4000g C g(-1)) was added in subsequent laboratory experiments, and respiration, SOM mineralisation ((CO2)-C-14 evolution), bacterial growth rates (leucine incorporation) and fungal biomass (ergosterol) were tracked during ca. 1week. Mineralisation of SOM aged 2-13months showed similar labile C concentration dependencies, and priming increased mineralisation of SOM systematically by up to 350%. The glucose treatments induced variable microbial growth responses for differently aged SOM, which were unrelated to the priming effect. That successional dynamics in microbial r- and K-selected groups, or bacterial and fungal decomposers, respectively, underpinned priming was incompatible with the results obtained. An alternative explanation could be that SOM transformation by extracellular enzymes, for subsequent respiration, could be triggered by labile C. In conclusion, labile C primed the mineralisation of 2-13months aged SOM, and the mechanism for this priming was unrelated to microbial growth dynamics

    Differential acquisition of amino acid and peptide enantiomers within the soil microbial community and its implications for carbon and nitrogen cycling in soil

    Get PDF
    l-isomeric amino acids and oligopeptides are thought to represent a key nitrogen (N) source for plants and soil microorganisms, bypassing the need to take up inorganic N, whilst self-cycling of d-enantiomers within peptidoglycan-containing bacteria may provide a further short circuit within the N cycle. Here we use stable isotope profiling (SIP) to identify the fate of organic N within soil microbial communities. We followed the incorporation of 13C-labelled d- or l-labelled amino acids/peptides into phospholipid fatty acids (PLFAs). l-alanine and its peptides were taken up more rapidly than d-enantiomers by Gram-positive bacteria with 13C incorporation being predominantly into anteiso- and iso-fatty acids typically associated with Gram-positive bacteria. d-enantiomer uptake was found not to differ significantly between the microbial groups, providing little support for the view that soil bacteria may self-cycle d-forms of amino acids and peptides. There was no consistent association between peptide chain length and incorporation. The concentrations of l- and d-isomeric amino acids in soil solution were 866 nM and 72 nM, respectively. We conclude that Gram-positive bacteria appear to be the primary competitors for l-enantiomeric forms of amino acids and their peptides, but that both d- and l-enantiomers are available N and C sources for bacteria and fungi

    Diabatic and Adiabatic Collective Motion in a Model Pairing System

    Get PDF
    Large amplitude collective motion is investigated for a model pairing Hamiltonian containing an avoided level crossing. A classical theory of collective motion for the adiabatic limit is applied utilising either a time-dependent mean-field theory or a direct parametrisation of the time-dependent Schr\"odinger equation. A modified local harmonic equation is formulated to take account of the Nambu-Goldstone mode. It turns out that in some cases the system selects a diabatic path. Requantizing the collective Hamiltonian, a reasonable agreement with an exact calculation for the low-lying levels are obtained for both weak and strong pairing force. This improves on results of the conventional Born-Oppenheimer approximation.Comment: 23 pages, 7 ps figures. Latex, uses revtex and graphic

    Combined use of empirical data and mathematical modelling to better estimate the microbial turnover of isotopically labelled carbon substrates in soil

    Get PDF
    The flow of carbon (C) through soil is inherently complex due to the many thousands of different chemical transformations occurring simultaneously within the soil microbial community. The accurate modelling of this C flow therefore represents a major challenge. In response to this, isotopic tracers (e.g. 13C, 14C) are commonly used to experimentally parameterise models describing the fate and residence time of individual C compounds within soil. In this study, we critically evaluated the combined use of experimental 14C labelling and mathematical modelling to estimate C turnover times in soil. We applied 14C-labelled alanine and glucose to an agricultural soil and simultaneously measured their loss from soil solution alongside the rate of microbial C immobilization and mineralization. Our results revealed that chloroform fumigation-extraction (CFE) cannot be used to reliably quantify the amount of isotopically labelled 13C/14C immobilised by the microbial biomass. This is due to uncertainty in the extraction efficiency values (kec) within the CFE methodology which are both substrate and incubation time dependent. Further, the traditional mineralization approach (i.e. measuring 14/13CO2 evolution) provided a poor estimate of substrate loss from soil solution and mainly reflected rates of internal microbial C metabolism after substrate uptake from the soil. Therefore, while isotope addition provides a simple mechanism for labelling the microbial biomass it provides limited information on the behaviour of the substrate itself. We used our experimental data to construct a new empirical model to describe the simultaneous flow of substrate-C between key C pools in soil. This model provided a superior estimate of microbial substrate use and microbial respiration flux in comparison to traditional first order kinetic modelling approaches. We also identify a range of fundamental problems associated with the modelling of isotopic-C in soil, including issues with variation in C partitioning within the community, model pool connectivity and variation in isotopic pool dilution, which make interpretation of any C isotopic flux data difficult. We conclude that while convenient, the use of isotopic data (13C, 14C, 15N) has many potential pitfalls necessitating a critical evaluation of both past and future studies

    Evaluation of Dissolved Organic Carbon as a Soil Quality Indicator in National Monitoring Schemes

    Get PDF
    Background: Monitoring the properties of dissolved organic carbon (DOC) in soil water is frequently used to evaluate changes in soil quality and to explain shifts in freshwater ecosystem functioning. Methods: Using >700 individual soils (0-15 cm) collected from a 209,331 km(2) area we evaluated the relationship between soil classification (7 major soil types) or vegetation cover (8 dominant classes, e. g. cropland, grassland, forest) and the absorbance properties (254 and 400 nm), DOC quantity and quality (SUVA, total soluble phenolics) of soil water. Results: Overall, a good correlation (r(2) = 0.58) was apparent between soil water absorbance and DOC concentration across the diverse range of soil types tested. In contrast, both DOC and the absorbance properties of soil water provided a poor predictor of SUVA or soluble phenolics which we used as a measure of humic substance concentration. Significant overlap in the measured ranges for UV absorbance, DOC, phenolic content and especially SUVA of soil water were apparent between the 8 vegetation and 7 soil classes. A number of significant differences, however, were apparent within these populations with total soluble phenolics giving the greatest statistical separation between both soil and vegetation groups. Conclusions: We conclude that the quality of DOC rather than its quantity provides a more useful measure of soil quality in large scale surveys

    Elementary Derivative Tasks and Neural Net Multiscale Analysis of Tasks

    Full text link
    Neural nets are known to be universal approximators. In particular, formal neurons implementing wavelets have been shown to build nets able to approximate any multidimensional task. Such very specialized formal neurons may be, however, difficult to obtain biologically and/or industrially. In this paper we relax the constraint of a strict ``Fourier analysis'' of tasks. Rather, we use a finite number of more realistic formal neurons implementing elementary tasks such as ``window'' or ``Mexican hat'' responses, with adjustable widths. This is shown to provide a reasonably efficient, practical and robust, multifrequency analysis. A training algorithm, optimizing the task with respect to the widths of the responses, reveals two distinct training modes. The first mode induces some of the formal neurons to become identical, hence promotes ``derivative tasks''. The other mode keeps the formal neurons distinct.Comment: latex neurondlt.tex, 7 files, 6 figures, 9 pages [SPhT-T01/064], submitted to Phys. Rev.

    Soil microbial organic nitrogen uptake is regulated by carbon availability

    Get PDF
    AbstractPlants and microorganisms intensely compete for nitrogen (N) at many stages of the terrestrial N cycle. In particular, the dissolved organic N (DON) pool, and competition for low molecular weight dissolved organic N (LMWDON) compounds such as amino acids and peptides (and LMW dissolved organic matter; LMWDOM as a whole) has received significant recent research interest. However, as LMWDON compounds contain both N and carbon (C), a question that remains is whether soil microorganisms are primarily taking up LMWDON mainly for the C or the N contained therein. We investigated microbial uptake rates of the model peptide l-trialanine as a rapidly cycling LMWDON compound in temperate grassland soils of differing fertility using 14C labelling to assess how soil fertility status influenced microbial uptake of LMWDON. We then imposed an excess of C as glucose and/or N as NH4Cl to ask whether the uptake of the peptide was affected by C or N excess. Our results demonstrate that l-trialanine is taken up rapidly from the soil solution (t½ < 1.5 min), and that an excess of C, rather than N, resulted in a reduced uptake of the peptide. From this, we conclude that LMWDON is taken up primarily to fulfil the C requirement of soil microorganisms, indicating that they exist in a C-limited state, and are able to respond quickly to a transient influx of an easily metabolisable resource
    corecore