222 research outputs found
Morphological Plasticity in the Tropical Sponge Anthosigmella Varians: Responses to Predators and Wave Energy.
The goal of the research presented here was to examine phenotypic plasticity exhibited by three morphotypes of the common Caribbean sponge Anthosigmella varians (Duchassaing & Michelotti). We were interested in examining the biotic (and, to a lesser extent, abiotic) factors responsible for branch production in this species. We also tested the hypothesis that the skeleton may serve an antipredator function in this sponge, focusing on vertebrate fish predators (i.e., angelfish) in this work. In transplant and caging experiments, unprotected forma varians replicates were immediately consumed by angelfish, while caged replicates persisted on the reef for several months. These findings support the hypothesis that predators (and not wave energy) restrict forma varians to lagoonal habitats. Branch production was not observed in A. varians forma incrustans when sponges were protected from predators or placed in predator-free, low-wave-energy environments. It is not clear from our work whether forma incrustans is capable of producing branches (i.e., whether branch production is a plastic trait in this morph). Additional field experiments demonstrated that A. varians forma varians increased spicule concentrations, compared to uninjured sponges, in response to artificial predation events, and A. varians forma rigida reduced spicule concentrations, compared to uncaged controls, when protected from predators. These findings indicate that spicule concentration is a plastic morphological trait that can be induced by damage, and that A. varians may be able to reduce spicule concentrations when environmental conditions change (e.g., in the absence of predators). The potential significance of inducible defenses and structural anti-predator defenses in sponges is discussed in relation to recent work on sponge chemical defenses
The development and optimization of techniques for monitoring water quality on-board spacecraft using colorimetric solid-phase extraction (C-SPE)
Manned missions to the moon, Mars, and deep space are currently a top priority for NASA. However, the lack of technology capable of maintaining and monitoring a life support system for long-term spaceflight presents many significant challenges. Moreover, recent issues with potable water quality on-board the International Space Station (ISS) have underscored the need to develop techniques for monitoring water quality in flight. This dissertation focuses on the development and microgravity validation of colorimetric-solid phase extraction (C-SPE) technology for the in-flight monitoring of spacecraft water quality. C-SPE measures the change in the diffuse reflectance of indicator disks following exposure to a water sample. A typical C-SPE analysis can be performed in âŒ2 min and requires only small, easy-to-use, lightweight hardware.;Specifically, this dissertation describes the development of C-SPE methods for determining formaldehyde and total silver. Formaldehyde is a contaminant that has recently been detected in the drinking water supplies on-board NASA spacecraft, while silver is currently used as a biocide to prevent microbial contamination of the ISS potable water supply. The formaldehyde method, which represents the first application of C-SPE to the detection of an organic analyte, can quantify formaldehyde concentrations from 0.08 to 20 ppm in âŒ3 min using only âŒ1 mL of sample. The total silver method builds on a C-SPE technique for detecting silver(I) that was previously developed in our laboratory. The new method determines the total concentration of silver (i.e., dissolved and colloidal) in the range of 0.1-1 ppm, which spans the ISS potable water target level of 0.3-0.5 ppm. This method also requires only âŒ1 mL of water and can be completed in less than 3 min.;Included in the dissertation are the results of recent microgravity evaluations of C-SPE techniques on-board NASA\u27s C-9 microgravity simulator. These experiments established effective methods for accurately collecting water samples of a target volume in microgravity, which had previously proven very problematic. Importantly, the flight results validated the performance of our C-SPE analyses for silver(I) and iodine (I2) under reduced gravity conditions, paving the way for a six-month technology demonstration project, scheduled on ISS for mid-2009
Reconstruction of Family-Level Phylogenetic Relationships within Demospongiae (Porifera) Using Nuclear Encoded Housekeeping Genes
Background: Demosponges are challenging for phylogenetic systematics because of their plastic and relatively simple morphologies and many deep divergences between major clades. To improve understanding of the phylogenetic relationships within Demospongiae, we sequenced and analyzed seven nuclear housekeeping genes involved in a variety of cellular functions from a diverse group of sponges.
Methodology/Principal Findings: We generated data from each of the four sponge classes (i.e., Calcarea, Demospongiae, Hexactinellida, and Homoscleromorpha), but focused on family-level relationships within demosponges. With data for 21 newly sampled families, our Maximum Likelihood and Bayesian-based approaches recovered previously phylogenetically defined taxa: Keratosap, Myxospongiaep, Spongillidap, Haploscleromorphap (the marine haplosclerids) and Democlaviap. We found conflicting results concerning the relationships of Keratosap and Myxospongiaep to the remaining demosponges, but our results strongly supported a clade of Haploscleromorphap+Spongillidap+Democlaviap. In contrast to hypotheses based on mitochondrial genome and ribosomal data, nuclear housekeeping gene data suggested that freshwater sponges (Spongillidap) are sister to Haploscleromorphap rather than part of Democlaviap. Within Keratosap, we found equivocal results as to the monophyly of Dictyoceratida. Within Myxospongiaep, Chondrosida and Verongida were monophyletic. A wellsupported clade within Democlaviap, Tetractinellidap, composed of all sampled members of Astrophorina and Spirophorina (including the only lithistid in our analysis), was consistently revealed as the sister group to all other members of Democlaviap. Within Tetractinellidap, we did not recover monophyletic Astrophorina or Spirophorina. Our results also reaffirmed the monophyly of order Poecilosclerida (excluding Desmacellidae and Raspailiidae), and polyphyly of Hadromerida and Halichondrida.
Conclusions/Significance: These results, using an independent nuclear gene set, confirmed many hypotheses based on ribosomal and/or mitochondrial genes, and they also identified clades with low statistical support or clades that conflicted with traditional morphological classification. Our results will serve as a basis for future exploration of these outstanding questions using more taxon- and gene-rich datasets
Reconstruction of Family-Level Phylogenetic Relationships within Demospongiae (Porifera) Using Nuclear Encoded Housekeeping Genes
Background: Demosponges are challenging for phylogenetic systematics because of their plastic and relatively simple morphologies and many deep divergences between major clades. To improve understanding of the phylogenetic relationships within Demospongiae, we sequenced and analyzed seven nuclear housekeeping genes involved in a variety of cellular functions from a diverse group of sponges.
Methodology/Principal Findings: We generated data from each of the four sponge classes (i.e., Calcarea, Demospongiae, Hexactinellida, and Homoscleromorpha), but focused on family-level relationships within demosponges. With data for 21 newly sampled families, our Maximum Likelihood and Bayesian-based approaches recovered previously phylogenetically defined taxa: Keratosap, Myxospongiaep, Spongillidap, Haploscleromorphap (the marine haplosclerids) and Democlaviap. We found conflicting results concerning the relationships of Keratosap and Myxospongiaep to the remaining demosponges, but our results strongly supported a clade of Haploscleromorphap+Spongillidap+Democlaviap. In contrast to hypotheses based on mitochondrial genome and ribosomal data, nuclear housekeeping gene data suggested that freshwater sponges (Spongillidap) are sister to Haploscleromorphap rather than part of Democlaviap. Within Keratosap, we found equivocal results as to the monophyly of Dictyoceratida. Within Myxospongiaep, Chondrosida and Verongida were monophyletic. A well-supported clade within Democlaviap, Tetractinellidap, composed of all sampled members of Astrophorina and Spirophorina (including the only lithistid in our analysis), was consistently revealed as the sister group to all other members of Democlaviap. Within Tetractinellidap, we did not recover monophyletic Astrophorina or Spirophorina. Our results also reaffirmed the monophyly of order Poecilosclerida (excluding Desmacellidae and Raspailiidae), and polyphyly of Hadromerida and Halichondrida.
Conclusions/Significance: These results, using an independent nuclear gene set, confirmed many hypotheses based on ribosomal and/or mitochondrial genes, and they also identified clades with low statistical support or clades that conflicted with traditional morphological classification. Our results will serve as a basis for future exploration of these outstanding questions using more taxon- and gene-rich datasets
RNA Interference in Marine and Freshwater Sponges: Actin Knockdown in \u3cem\u3eTethya wilhelma\u3c/em\u3e and \u3cem\u3eEphydatia muelleri\u3c/em\u3e by Ingested dsRNA Expressing Bacteria
Background: The marine sponge Tethya wilhelma and the freshwater sponge Ephydatia muelleri are emerging model organisms to study evolution, gene regulation, development, and physiology in non-bilaterian animal systems. Thus far, functional methods (i.e., loss or gain of function) for these organisms have not been available.
Results: We show that soaking developing freshwater sponges in double-stranded RNA and/or feeding marine and freshwater sponges bacteria expressing double-stranded RNA can lead to RNA interference and reduction of targeted transcript levels. These methods, first utilized in C. elegans, have been adapted for the development and feeding style of easily cultured marine and freshwater poriferans. We demonstrate phenotypic changes result from \u27knocking down\u27 expression of the actin gene.
Conclusion: This technique provides an easy, efficient loss-of-function manipulation for developmental and gene regulatory studies in these important non-bilaterian animals
Freshwater sponge hosts and their green algae symbionts: A tractable model to understand intracellular symbiosis
In many freshwater habitats, green algae form intracellular symbioses with a variety of heterotrophic host taxa including several species of freshwater sponge. These sponges perform important ecological roles in their habitats, and the poriferan:green algae partnerships offers unique opportunities to study the evolutionary origins and ecological persistence of endosymbioses. We examined the association between Ephydatia muelleri and its chlorophyte partner to identify features of host cellular and genetic responses to the presence of intracellular algal partners. Chlorella-like green algal symbionts were isolated from field-collected adult E. muelleri tissue harboring algae. The sponge-derived algae were successfully cultured and subsequently used to reinfect aposymbiotic E. muelleri tissue. We used confocal microscopy to follow the fate of the sponge-derived algae after inoculating algae-free E. muelleri grown from gemmules to show temporal patterns of symbiont location within host tissue. We also infected aposymbiotic E. muelleri with sponge-derived algae, and performed RNASeq to study differential expression patterns in the host relative to symbiotic states. We compare and contrast our findings with work in other systems (e.g., endosymbiotic Hydra) to explore possible conserved evolutionary pathways that may lead to stable mutualistic endosymbioses. Our work demonstrates that freshwater sponges offer many tractable qualities to study features of intracellular occupancy and thus meet criteria desired for a model system
The Status of Women Leaders in Utah Higher Education: A 2021 Update
In 2014, the Utah Women & Leadership Project (UWLP) released a research and policy brief titled, âThe Status of Women Leaders in Utah Education,â and in 2017 an update brief was published. These reports focused on the status of womenâs leadership in both Kâ12 and postsecondary education across the state of Utah. This brief provides an update for 2021, focused only on the higher education portion of the previous briefs. The purpose of this brief is to determine what, if any, progress has been made in womenâs leadership within Utahâs higher education sector, including public and the two largest private institutions, as well as technical colleges, which were combined with the Utah System of Higher Education (USHE) in July 2020 to form the Utah Board of Higher Education (UBHE). This brief compares Utah data with national data and reviews the applicable literature. Comparisons will also be drawn by looking at Utahâs data from 2014, 2017, and 2021
Transcriptomic analysis of differential host gene expression upon uptake of symbionts: a case study with Symbiodinium and the major bioeroding sponge Cliona varians
Background: We have a limited understanding of genomic interactions that occur among partners for many symbioses. One of the most important symbioses in tropical reef habitats involves Symbiodinium. Most work examining Symbiodinium-host interactions involves cnidarian partners. To fully and broadly understand the conditions that permit Symbiodinium to procure intracellular residency, we must explore hosts from different taxa to help uncover universal cellular and genetic strategies for invading and persisting in host cells. Here, we present data from gene expression analyses involving the bioeroding sponge Cliona varians that harbors Clade G Symbiodinium. Results: Patterns of differential gene expression from distinct symbiont states (ânormalâ, âreinfectedâ, and âaposymbioticâ) of the sponge host are presented based on two comparative approaches (transcriptome sequencing and suppressive subtractive hybridization (SSH)). Transcriptomic profiles were different when reinfected tissue was compared to normal and aposymbiotic tissue. We characterized a set of 40 genes drawn from a pool of differentially expressed genes in âreinfectedâ tissue compared to âaposymbioticâ tissue via SSH. As proof of concept, we determined whether some of the differentially expressed genes identified above could be monitored in sponges grown under ecologically realistic field conditions. We allowed aposymbiotic sponge tissue to become re-populated by natural pools of Symbiodinium in shallow water flats in the Florida Keys, and we analyzed gene expression profiles for two genes found to be increased in expression in âreinfectedâ tissue in both the transcriptome and via SSH. These experiments highlighted the experimental tractability of C. varians to explore with precision the genetic events that occur upon establishment of the symbiosis. We briefly discuss lab- and field-based experimental approaches that promise to offer insights into the co-opted genetic networks that may modulate uptake and regulation of Symbiondinium populations in hospite. Conclusions: This work provides a sponge transcriptome, and a database of putative genes and genetic pathways that may be involved in Symbiodinium interactions. The relative patterns of gene expression observed in these experiments will need to be evaluated on a gene-by-gene basis in controlled and natural re-infection experiments. We argue that sponges offer particularly useful characteristics for discerning essential dimensions of the Symbiodinium niche. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-376) contains supplementary material, which is available to authorized users
- âŠ