41 research outputs found

    Pyran-Squaraine as Photosensitizers for Dye-Sensitized Solar Cells: DFT/TDDFT Study of the Electronic Structures and Absorption Properties

    Get PDF
    In an effort to provide, assess, and evaluate a theoretical approach which enables designing efficient donor-acceptor dye systems, the electronic structure and optical properties of pyran-squaraine as donor-acceptor dyes used in dye-sensitized solar cells were investigated. Ground state properties have been computed at the B3LYP/6-31+G** level of theory. The long-range corrected density functionals CAM-B3LYP, PBEPBE, PBE1PBE (PBE0), and TPSSH with 6-311++G** were employed to examine absorption properties of the studied dyes. In an extensive comparison between experimental results and ab initio benchmark calculations, the TPSSH functional with 6-311++G** basis set was found to be the most appropriate in describing the electronic properties for the studied pyran and squaraine dyes. Natural transition orbitals (NTO), frontier molecular orbitals (FMO), LUMO, HOMO, and energy gaps, of these dyes, have been analyzed to show their effect on the process of electron injection and dye regeneration. Interaction between HOMO and LUMO of pyran and squaraine dyes was investigated to understand the recombination process and charge-transfer process involving these dyes. Additionally, we performed natural bond orbital (NBO) analysis to investigate the role of charge delocalization and hyperconjugative interactions in the stability of the molecule

    Unconventional hydrogen bonding to organic ions in the gas phase: Stepwise association of hydrogen cyanide with the pyridine and pyrimidine radical cations and protonated pyridine

    Get PDF
    Equilibrium thermochemical measurements using the ion mobility drift cell technique have been utilized to investigate the binding energies and entropy changes for the stepwise association of HCN molecules with the pyridine and pyrimidine radical cations forming the C5H5N+· (HCN)nand C4H4N2 +· (HCN)n clusters, respectively, with n = 1–4. For comparison, the binding of 1–4 HCN molecules to the protonated pyridine C5H5NH+(HCN)n has also been investigated. The binding energies of HCN to the pyridine and pyrimidine radical cations are nearly equal (11.4 and 12.0 kcal/mol, respectively) but weaker than the HCN binding to the protonated pyridine (14.0 kcal/mol). The pyridine and pyrimidine radical cations form unconventional carbon-based ionic hydrogen bonds with HCN (CHδ+⋯NCH). Protonated pyridine forms a stronger ionichydrogen bond with HCN (NH+⋯NCH) which can be extended to a linear chain with the clustering of additional HCN molecules (NH+⋯NCH··NCH⋯NCH) leading to a rapid decrease in the bond strength as the length of the chain increases. The lowest energy structures of the pyridine and pyrimidine radical cation clusters containing 3-4 HCN molecules show a strong tendency for the internal solvation of the radical cation by the HCN molecules where bifurcatedstructures involving multiple hydrogen bonding sites with the ring hydrogen atoms are formed. The unconventional H-bonds (CHδ+⋯NCH) formed between the pyridine or the pyrimidine radical cations and HCN molecules (11–12 kcal/mol) are stronger than the similar (CHδ+⋯NCH)bonds formed between the benzene radical cation and HCN molecules (9 kcal/mol) indicating that the CHδ+ centers in the pyridine and pyrimidine radical cations have more effective charges than in the benzene radical cation

    Hydration of the pyrimidine radical cation and stepwise solvation of protonated pyrimidine with water, methanol, and acetonitrile

    Get PDF
    Equilibrium thermochemical measurements using an ion mobility drift cell technique have been utilized to investigate the binding energies and entropy changes associated with the stepwise hydration of the biologically significant ions pyrimidine radical cation and protonated pyrimidine. The binding energy of the hydrated pyrimidine radical cation is weaker than that of the proton-bound dimer pyrimidineH+(H2O) consistent with the formation of a weak carbon-based CHδ+··OH2 hydrogen bond (11.9 kcal/mol) and a stronger NH+··OH2 hydrogen bond (15.6 kcal/mol), respectively. Other proton-bound dimers such as pyrimidineH+(CH3OH) and pyrimidineH+(CH3CN) exhibit higher binding energies (18.2 kcal/mol and 22.8 kcal/mol, respectively) due to the higher proton affinities and dipole moments of acetonitrile and methanol as compared towater. The measured collisional cross sections of the proton-bound dimers provide experimental-based support for the DFT calculated structures at the M06-2x/6-311++G (d,p) level. The calculations show that the hydrated pyrimidine radical cation clusters form internally solvated structures in which the water molecules are bonded to the C4N2H4 •+ ion by weak CHδ+··OH2 hydrogen bonds. The hydrated protonated pyrimidine clusters form externally solvatedstructures where the water molecules are bonded to each other and the ion is external to thewater cluster. Dissociative proton transfer reactions C4N2H4 •+(H2O)n−1 + H2O → C4N2H3 • + (H2O)nH+ and C4N2H5 +(H2O)n−1 + H2O → C4N2H4 + (H2O)nH+ are observed for n ≥ 4 where the reactions become thermoneutral or exothermic. The absence of the dissociative proton transfer reaction within the C4N2H5 +(CH3CN)n clusters results from the inability of acetonitrile molecules to form extended hydrogen bonding structures such as those formed by water and methanol due to the presence of the methyl groups which block the extension of hydrogen bonding networks

    Toward the Understanding of the Metabolism of Levodopa I. DFT Investigation of the Equilibrium Geometries, Acid-Base Properties and Levodopa-Water Complexes

    Get PDF
    Levodopa (LD) is used to increase dopamine level for treating Parkinson’s disease. The major metabolism of LD to produce dopamine is decarboxylation. In order to understand the metabolism of LD; the electronic structure of levodopa was investigated at the Density Functional DFT/B3LYP level of theory using the 6-311+G** basis set, in the gas phase and in solution. LD is not planar, with the amino acid side chain acting as a free rotator around several single bonds. The potential energy surface is broad and flat. Full geometry optimization enabled locating and identifying the global minimum on this Potential energy surface (PES). All possible protonation/deprotonation forms of LD were examined and analyzed. Protonation/deprotonation is local in nature, i.e., is not transmitted through the molecular framework. The isogyric protonation/deprotonation reactions seem to involve two subsequent steps: First, deprotonation, then rearrangement to form H-bonded structures, which is the origin of the extra stability of the deprotonated forms. Natural bond orbital (NBO) analysis of LD and its deprotonated forms reveals detailed information of bonding characteristics and interactions across the molecular framework. The effect of deprotonation on the donor-acceptor interaction across the molecular framework and within the two subsystems has also been examined. Attempts to mimic the complex formation of LD with water have been performed

    Electronic Structure and Spectra of Thiolo- and Dithiocarbamates. MO Treatment

    Get PDF
    Electronic absorption spectra of some thiolo- and dithiocarbamates are reported. The observed spectra have been computer deconvoluted and accurate peak parameters have been determined. Assignment of the observed bands has been facilitated by MO computations. Comparison with the spectra of carbamates enabled prediction of the effect of replacing oxygen by sulphur on the electronic structure of carbamates

    Towards understanding mode of action of L-dopa and carbidopa: DFT/TD-DFT analyses of their electronic and vibration spectra

    No full text
    1378-1386<span style="font-size:11.0pt;font-family: " times="" new="" roman","serif";mso-fareast-font-family:"times="" roman";mso-bidi-font-family:="" mangal;mso-ansi-language:en-gb;mso-fareast-language:en-us;mso-bidi-language:="" hi"="" lang="EN-GB">The electronic absorption and vibrational spectra of L-dopa (LD) and carbidopa (CD) have been measured experimentally in different solvents and also computed theoretically. FTIR spectra of LD and CD have been computed theoretical at the B3LYP/6-311++G** level of theory. <span style="font-size: 11.0pt;font-family:" times="" new="" roman","serif";mso-fareast-font-family:calibri;="" mso-bidi-font-family:mangal;mso-ansi-language:en-gb;mso-fareast-language:en-us;="" mso-bidi-language:hi"="" lang="EN-GB">A scaling factor of 0.95 results in good correspondence between calculated and experimental spectra. Vibrational modes have been assigned and similarities and differences between the FTIR spectra of LD and CD are discussed. Two IR marker bands have been identified for CD. Based on TD-DFT/TPSSh calculations, the leading transitions contributing to the electronic absorption of LD and CD are proposed. These findings have been discussed in the context of the experimentally observed spectra reported for LD and CD in different solvents. NTO analyses clearly indicate that most of the leading transitions in LD and partially in CD involve a sizable charge transfer from the aromatic catechol moiety to the aliphatic amino acid side chain. The short wavelength transition, however, shows an opposite trend.</span

    Hydrogen bond coupling in sodium dihydrogen triacetate

    No full text
    The coupling of hydrogen bonds is central to structures and functions of biological systems. Hydrogen bond coupling in sodium dihydrogen triacetate (SDHTA) is investigated as a model for the hydrogen bonded systems of the type O-H...O. The twodimensional potential energy surface is derived from the full-dimensional one by selecting the relevant vibrational modes of the hydrogen bonds. The potential energy surfaces in terms of normal modes describing the anharmonic motion in the vicinity of the equilibrium geometry of SDHTA are calculated for the different species, namely, HH, HD, DH, and DD isotopomers. The ground state wave functions and their relation to the hydrogen bond structural parameters are discussed. It has been found that the hydrogen bonds in SDHTA are uncoupled, that is elongation of the deuterated hydrogen bond does not affect the non-deuterated one.Scopu
    corecore