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Unconventional hydrogen bonding to organic ions in the gas phase:

Stepwise association of hydrogen cyanide with the pyridine
and pyrimidine radical cations and protonated pyridine
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(Received 11 June 2014; accepted 4 July 2014; published online 5 August 2014)

Equilibrium thermochemical measurements using the ion mobility drift cell technique have been
utilized to investigate the binding energies and entropy changes for the stepwise association of
HCN molecules with the pyridine and pyrimidine radical cations forming the CsH;N*(HCN),
and C,H,N,*+ - (HCN), clusters, respectively, with n = 1-4. For comparison, the binding of 14
HCN molecules to the protonated pyridine CsH;NH*(HCN), has also been investigated. The bind-
ing energies of HCN to the pyridine and pyrimidine radical cations are nearly equal (11.4 and 12.0
kcal/mol, respectively) but weaker than the HCN binding to the protonated pyridine (14.0 kcal/mol).
The pyridine and pyrimidine radical cations form unconventional carbon-based ionic hydrogen bonds
with HCN (CH’*...NCH). Protonated pyridine forms a stronger ionic hydrogen bond with HCN
(NH*-..NCH) which can be extended to a linear chain with the clustering of additional HCN
molecules (NH"- - .NCH - - NCH- - -NCH) leading to a rapid decrease in the bond strength as the
length of the chain increases. The lowest energy structures of the pyridine and pyrimidine radical
cation clusters containing 3-4 HCN molecules show a strong tendency for the internal solvation
of the radical cation by the HCN molecules where bifurcated structures involving multiple hydrogen
bonding sites with the ring hydrogen atoms are formed. The unconventional H-bonds (CH**- . .NCH)
formed between the pyridine or the pyrimidine radical cations and HCN molecules (11-12 kcal/mol)
are stronger than the similar (CH’*- - .NCH) bonds formed between the benzene radical cation and
HCN molecules (9 kcal/mol) indicating that the CH?* centers in the pyridine and pyrimidine radical
cations have more effective charges than in the benzene radical cation. © 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4890372]

. INTRODUCTION

Hydrogen bonding is one of the most important inter-
molecular interactions in chemistry and biology both in gas
phase and condensed phase systems.' A special class of
this interaction, usually referred to as ionic hydrogen bonds
(IHBs), involves hydrogen bonding between radical ions or
protonated molecules and neutral molecules.* IHBs have
bond strengths higher than the typical conventional hydro-
gen bond in neutral systems and they could reach up to 35
kcal/mol, nearly a third of the strength of covalent bonds.
These strong interactions are critical in many fields such as
ion induced nucleation, ionic clusters, ion solvation, radiation
chemistry, electrochemistry, acid-base chemistry, and self-
assembly in supramolecular chemistry.'® IHBs are also im-
portant in biological systems including protein folding, proton
transport, membranes, enzyme active centers, and molecular
recognition.'~®

Unconventional carbon-based IHBs are formed when the
hydrogen donors are ionized hydrocarbons containing CH
groups and the hydrogen acceptors are electron lone pairs on
hetero atoms such as O or N, olefin double bonds, or aromatic
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7 systems.* For example, carbon-based CH?*. . .O THBs ap-
pear in the hydration of ionized aromatics such as benzene
(CgHgt+), cyclic C3H, ™, and phenyl acetylene (CgHg++).710
In addition to water, other polar molecules containing lone
pair of electrons such as hydrogen cyanide can participate in
hydrogen bonding interactions with the ring hydrogen atoms
(CH®*) of ionized aromatics. Hydrogen cyanide is a useful
probe of non-covalent interactions because it is a highly polar
molecule (u = 2.98 D), and it can serve both as a hydro-
gen donor and as a lone-pair hydrogen acceptor in hydrogen
bonds. Furthermore, HCN is an important atmospheric com-
pound known to be produced by biomass burning, and it can
be produced in interstellar/nebula environments by the reac-
tions of ammonia and methane.'! In fact, HCN polymers have
been shown to exist in meteorites, comets, planets, moons,
and in circumstellar envelops.'?>"'* Ton-molecule interactions
involving HCN, particularly those that lead to the formation
of larger species either through chemical addition or asso-
ciation reactions, are of particular interest for the formation
of complex organics, clustering, and polymerization in astro-
chemical environments. !¢

We recently studied the stepwise association of HCN
with benzene, substituted benzene, and phenylacetylene
radical cations.!”'° In benzene T(HCN), clusters the lig-

© 2014 AIP Publishing LLC
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and molecules are bonded to the benzene hydrogens by
—CH’*...N hydrogen bonds, but linear hydrogen bonded
HCN. - -HCN- - -HCN chains are also formed with further
HCN molecules.!"!® In the phenylacetylene' *(HCN),
clusters, the dominant interaction was hydrogen bonding
between the C-H acetylenic hydrogen and the nitrogen
atom of the HCN ligand.! Here also subsequent ligand
molecules are added to form linear hydrogen bonded
phenylacetylene” *(NCH.- - -NCH. - -) chains.!” Such chains
were suggested previously in protonated (HCN) H™ clus-
ters (HCN-.-(HCN..-H*...NCH). - -NCH) where binding
enthalpies indicated completion of solvent shells by two
(first shell) or four (second shell) HCN molecules about the
proton.* 1516

Ionized aromatics containing N heteroatoms such as the
pyridine and the pyrimidine radical cations can also partic-
ipate in hydrogen bonding interactions.??! The hydration
of these ions has been investigated both experimentally and
theoretically.?’-?>! However, no data exist on the interactions
of these ions with HCN in spite of their importance in biol-
ogy and origin of life. Here, we present the first study of the
stepwise association of HCN with the pyridine (CsNHs*+)
and pyrimidine (C,N,H,* ") radical cations and protonated
pyridine (CsNH5)H™. We apply equilibrium thermochemical
measurements to study the association of 1-4 HCN molecules
with the pyridine and pyrimidine radical cations and compare
their thermochemistry with the HCN association with the pro-
tonated pyridine. We also provide Density Functional Theory
(DFT) calculations of the structures of the CsNHs** (HCN),,
C,N,H,*"(HCN),, and C;NH;H*(HCN), clusters with
n = 1-4, and investigate the role of hydrogen bonding in-
teractions -CH®*. . .NCH and -NH’*. . .NCH as compared to
the ion-dipole N°*. . .NCH interaction in the formation mech-
anism of these nitrogen-containing cluster ions. The results
provide new insights into the factors that determine the struc-
tures and energetics of the clusters of polar molecules with
N-containing heterocyclic organic ions.

Il. EXPERIMENTAL SECTION

The gas phase ion association experiments were per-
formed using the Virginia Commonwealth University (VCU)
mass-selected ion mobility spectrometer. The details of the
instrument can be found in several publications and only
a brief description of the experimental procedure is given
here.® 72! In the experiments, the molecular ions of pyridine
(CsHsN+-), pyrimidine (C,H,N,* ") are formed by electron
impact ionization using electron energy of 60-70 eV follow-
ing the supersonic expansion of 40 psi (2.8 bars) of ultra-high
pure helium seeded with about 1%—-4% of pyridine or pyrim-
idine vapor through a pulsed supersonic nozzle (500 pxm) to
the vacuum source chamber with 10~7 mbar pressure. In order
to form the H pyridine (CsHNH™), 10% H, in helium was
used as carrier gas. CsHsN+*, C;HsNH™, or C,H,N,** ions
were mass-selected by the first quadrupole mass-filter and in-
jected in (30-50 us pulses) into the drift cell which contains
neutral HCN gas in a mixture with helium buffer gas. Flow
controllers (MKS # 1479A) are used to maintain a constant
pressure inside the drift cell within +1 mTorr. The temper-
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ature of the drift cell can be controlled to better than +1 K
using four temperature controllers. Liquid nitrogen flowing
through solenoid valves is used to cool down the drift cell.
The reaction products can be identified by scanning a second
quadrupole mass filter located coaxially after the drift cell.
The arrival time distributions (ATDs) are collected by mon-
itoring the intensity of each ion as a function of time. The
reaction time can be varied by varying the drift voltage. The
injection energies used in the experiments (10-14 eV, labora-
tory frame) are slightly above the minimum energies required
to introduce the ions into the cell against the HCN/He outflow
from the entrance orifice. Most of the ion thermalization oc-
curs outside the cell entrance by collisions with the HCN/He
gases escaping from the cell entrance orifice. At a cell pres-
sure of 0.2 Torr, the number of collisions that the ion encoun-
ters with the neutral molecules within the 1.5 ms residence
time inside the cell is about 10* collisions, which is sufficient
to ensure efficient thermalization of the molecular ions.

HCN is prepared by adding 8 g of sodium cyanide
(NaCN) (Sigma-Aldrich, 97%) into a 500 ml stainless steel
bubbler which is then placed in liquid nitrogen and evacuated
followed by the addition of 4 ml of pure sulfuric acid (H,SO,)
(Aldrich, 99.999%) through a stainless steel tube extension of
the inlet valve of the bubbler. Following the reaction of sulfu-
ric acid with the sodium cyanide salt inside the bubbler, HCN
gas evolves and the bubbler is allowed to warm up to room
temperature. The pressure in the HCN line is monitored by a
Baratron pressure gauge (MKS-626A13TBD).

The equilibrium reactions (taken pyridine radical cation
CsHsN** as an example) are represented by Eq. (1),

[CsHsN*'(HCN), ]+ HCN == [C{H,NT'(HCN), I (1)

The establishment of equilibrium is verified when: (1) a con-
stant ratio of the integrated intensity of the product to the re-
actant ions is maintained over the residence time of the ions
at constant pressure and temperature, and (2) the ATDs of
the reactant and product ions are identical indicating equal
residence times. When the equilibrium conditions are well-
established, the equilibrium constant, Keq, can be measured
using Eq. (2),

c [CsHsN™ - (HCN), ]
“ " [CsHsN*+-(HCN), ,1-[HCN]

B I|CsHsNt - (HCN),|
I[CsHsN*t - (HCN),_,] - Pycy

) (@)

where I[CsHsN*+ - (HCN),, _ |]1and I[CsHsN*+ - (HCN),,] are
the integrated intensities of the ATDs of the reactant and prod-
uct cluster ions, respectively of reaction (1) and Py is the
pressure of HCN (in atmosphere) inside the drift cell. The
equilibrium constant, Keq, is measured at different tempera-
tures and from a van’t-Hoff plot, AH® and AS® values are
obtained from the slope and intercept, respectively. The mea-
sured values are duplicated at least three times and the average
values are reported in Table I the corresponding uncertainties.



054305-3 Hamid et al.

TABLE 1. Measured thermochemistry (—AH® ,  and —AS W) of the
formation of C;H;N** (HCN), and CSHSNHWHCN)11 clusters; withn = 1-
4 and the corresponding calculated binding energies for the two lowest energy
structures within 2 kcal/mol.

Pyridine** (HCN),

n — AHO! —ASOP AE (M06-2X)°

1 11.4 21.8 11.9-11.4

2 8.8 19.3 10.9-9.4

3 7.8 20.4 10.6-9.6

4 6.4 16.5 8.7-6.8
PyridineH* (HCN),

n —AH%? —AS°P AE (M06-2X)°

1 14.0 26.6 16.0

2 9.7 22.9 12.0-11.3

3 8.5 232 8.1-7.6

4 6.1 14.5 8.4-7.0

SAH° nln units are kcal/mol.

hASOn,l , units are cal/mol K. Error estimate for experimental values from standard de-

viations of van’t Hoff and from usual uncertainties in clustering equilibrium temperature
studies: AH® £1 kcal/mol, AS® +2 cal/mol K.

°Binding energy calculated at the M06-2X/6-3114+G(d,p) level with ZPE and BSSE
corrections included.

lll. THEORETICAL SECTION

DFT calculations of the lowest energy struc-
tures of CsH;N+-(HCN),, C,H;N,*-(HCN), and
CsH;NH+- (HCN), clusters with n = 1-4 were carried
out at the M06-2X/6-3114+G(d,p) level using the Gaussian

(2)

Py P=1.02 Torr He
T=300 K
T T T T T T T
Py P=0.25 Torr HCN
T=283 K
- Py.HCN
9
c
&l
‘E o T
© [ T T T T T
; P=0.19 Torr HCN
= Py.(HCN), T=225K
2
Q
£
Py.(HCN),
Py.HCN a  Py.(HCN),
A A ‘l T )‘u hae
. ; ; = ; ; ;
P=0.17 Torr HCN
T=194 K Py-(HCN),
Py.(HCN),
b
Py.(HCN), Py.(HCN),
. s b
T T T T T T
100 150 200 250

m/z

J. Chem. Phys. 141, 054305 (2014)

09 suite of programs.?> Frequency calculations have been
performed for all the optimized geometries at the same
level of theory to obtain the zero point vibrational energy
(ZPVE) and to verify the absence of any imaginary fre-
quencies. The calculated binding energies (with respect to
CsHsN+- (HCN),;, + HCN) were corrected for basis set
superposition error (BSSE) using the scheme of Boys and
Bernardi as described in the Gaussian program.”?

IV. RESULTS AND DISCUSSION

A. Association of HCN with the pyridine radical cation
and protonated pyridine

Figure 1(a) displays the mass spectra obtained following
the injection of the mass-selected pyridine ion into the drift
cell containing 1.0 Torr He at 298 K. It is clear that no dis-
sociation products are observed consistent with the low injec-
tion energy used (13.8 eV, lab). In the presence of 0.25 Torr
HCN vapor in the drift cell at 283 K, the first two association
products CsHsN+* (HCN), with n = 1 and 2 are observed as
shown in Fig. 1(a). As the temperature decreases the ion inten-
sity of CsHsN+- significantly decreases and eventually dis-
appears as the equilibrium shifts to higher C;HyN+ - (HCN),
clusters. At 194 K, the cluster population is dominated by the
CsHsN+- (HCN), ions with n = 3 and 4. Similar results are
obtained following the injection of the protonated pyridine
into the drift cell containing HCN as shown in Fig. 1(b).

(b)

P=0.87 Torr He

H'Py T=245 K

Py

T T
P=0.21 Torr HCN
H'Py(HCN), T=245K

H'Py(HCN)

H'Py(HCN),

Intensity (arb. units)

P=0.17 Torr HCN ' ' '

T=194 K H'Py(HCN),
H'Py(HCN),

z

b 2

&

H'Py(HCN), a L T

il o v s o wal AL... \ .‘. T b b b | Ea uins P T .Jl

T T T T T
100 150 200
m/z

FIG. 1. (a) Mass spectra resulting from the injection of the mass-selected pyridine radical cation (Py ) into helium gas or HCN vapor at different temperatures
using 13.8 eV injection energy (laboratory frame) and 4 V/cm applied field. (b) Mass spectra resulting from the injection of protonated pyridine (H*Py) into
helium gas or HCN vapor at different temperatures using 14.2 eV injection energy (laboratory frame) and 4 V/cm applied field. The peaks labeled (a) m/z 165
and (b) m/z 192 are due to the association of HCN with a trace impurity (m/z 138) present in the drift cell.
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24
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FIG. 2. van’t Hoff plots of the temperature dependence of the equilibrium constants for the stepwise association of HCN with (a) the pyridine radical cation
yielding C5H5N+ (HCN),, with n = 1-4, and (b) protonated pyridine yielding CSHSNH*'(HCN)n withn = 1-4.

A good test of equilibrium comes from the iden-
tical ATDs of the ions coupled by equilibrium. If the
C;H;N*- (HCN), , and CsHsN+ - (HCN), ions are in equilib-
rium, their ATDs must be identical. This is evident from the
ATDs shown in Figure S1 of the supplementary material®®
for the CsHsN*(HCN), ions. The equilibrium constants
for the stepwise association of HCN with CsHsN+** and
C;H;NH* measured at different temperatures yield the van’t
Hoff plots shown in Figures 2(a) and 2(b), respectively.
The resulting AH® and AS° values for the formation of the
CsH;N+- (HCN), and CsHsNHT(HCN), clusters are listed in
Table I.

The sequential binding energies of HCN to the pyri-
dine radical cation or to the protonated pyridine, shown in
Table I, follow the trend of decreasing AH® ;  with in-
creasing n which can be expected for association reactions
dominated by ion-dipole interactions.*'>'® Furthermore, the
sequential entropy loss values are consistent with ion-dipole
interactions where internal rotation and low frequency vibra-
tions are retained.* 1>~'° The thermochemical data also show
that HCN binds more strongly to the protonated pyridine
(—AH°® = 14.0 kcal/mol) than to the pyridine radical cation
(—AH® = 11.4 kcal/mol). However, the difference in bind-
ing between the radical cation and the protonated pyridine de-
creases as the number of HCN molecules increases which is
expected since the charge-dipole interaction between proto-
nated pyridine and the associated HCN molecule decreases
with increasing the cluster size. Thus the binding energies
for the n = 4 molecule in both the C;HsN+*(HCN), and
CsH;NHT(HCN), clusters are essentially similar (6.4 and
6.1 kcal/mol, respectively).

The DFT lowest energy structures of the
CsH;N+-(HCN), and C;H;NHT(HCN), clusters with n
= 1-4 calculated at the M06-2X/6-311+4+G(d,p) are shown
in Figures 3 and 4, respectively, and the binding energies
calculated for the two lowest structures (within 2 kcal/mol)
are listed in Table I. The calculated binding energies agree

reasonably with the measured (—AH®, ) although in most
cases, the binding energies of the second lowest energy struc-
tures appear to be in better agreement with the experimental
values than the lowest energy structures.

Two isomers (1-a and 1-b) with binding energies of
11.9 and 11.4 kcal/mol, respectively, are predicted for the
CsHs;N*: (HCN) cluster as shown in Fig. 3. These binding
energies are in excellent agreement with the experimental
value of 11.4 kcal/mol. Both structures show H-bonding be-
tween the C-H’- .. of the pyridine cation and the N atom
of HCN. However isomer (a) has a bifurcated structure with
the N-atom of HCN forming two long H-bonds (2.56 A
and 2.34 A) with the ortho- and meta-CH groups of the
pyridine cation. This structure is similar to the lowest en-
ergy isomer of the benzene+: (HCN) cluster.!” The second
lowest energy isomer (b) has a 2.07 A hydrogen bond be-
tween the N-atom of HCN and the ortho-aromatic hydro-
gen atom. The third most stable isomer (1-c) has the HCN
molecule attached to the para-aromatic hydrogen atom via
2.2 A hydrogen bond. This isomer is 2.7 kcal/mol higher
in energy than isomer 1-a, and therefore, it gives a bind-
ing energy significantly lower (9.3 kcal/mol) than the ex-
perimental value of 11.4 kcal/mol. The three lowest energy
structures of the CsH;N+ - (HCN) cluster confirm that the in-
teraction of HCN with the pyridine cation is dominated by hy-
drogen bonding between the N of HCN and the ring H atom.
In spite of the acidic character of the H atom of HCN, no
hydrogen bonding is observed to the N atom of the pyridine
cation which carries a net positive charge as shown by the
charge density distribution (Figure S2 of the supplementary
material).??

The lowest energy structures of CsHsN+- (HCN), clus-
ters with n = 2—4 show a tendency for the internal solvation
of the pyridine cation by the HCN molecules where bifurcated
structures involving multiple hydrogen bonding sites with the
ring hydrogen atoms are formed such as shown in structures
(2-a), (3-a), (3-b), (4-a), and (4-b). Structures (2-b) and (3-c)
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FIG. 3. Structures of pyridine* - (HCN), , calculated by DFT at the M06-2x/6-311++G (d,p) level. Relative energies (RE) are the total electronic energies
with respect to the lowest energy isomer (0.0). Binding energies (AE) are corrected for zero-point energies (ZPE) and basis-set super position errors (BSSE).

Energies are in kcal/mol. Distances are in Angstrom.

show the formation of hydrogen bonding chains involving two
or three HCN molecules, respectively, attached to the pyridine
cation through bifurcated structures. However, no chain struc-
tures involving four HCN molecules have been found in the
CsHsN+- (HCN), clusters indicating that HCN interactions
with the pyridine ring are more favorable than the interac-
tions within the HCN chains. It is interesting to note that the
chain structures (2-b, AE = 9.4 kcal/mol) and (3-c, AE = 8.2
kcal/mol) show good agreement with the measured binding
energies (8.8 and 7.8 kcal/mol, respectively) unlike the sol-
vated pyridine structures (2-a, AE = 10.9 kcal/mol) and (3-a,
AE = 10.6 kcal/mol) which tend to overestimate the binding
energies. On the other hand, for the C;H;N+- (HCN), clus-
ter the solvated pyridine structures (4-b, AE = 6.8 kcal/mol)

and (4-c, AE = 6.1 kcal/mol) are in good agreement with the
measured binding energy of 6.4 kcal/mol.

The lowest energy structures of the HCN molecules asso-
ciated with the protonated pyridine in the CsHsNHT(HCN),
clusters are dominated by conventional IHBs between the
NH* group of the protonated pyridine and the nitrogen atom
of HCN as shown in all structures displayed in Fig. 4 ex-
cept structures (1-b) and (1-c). These high energy structures
exhibit significantly lower binding energies (1-b and I-c,
AE = 9.2 and 8.1 kcal/mol, respectively) as compared to the
experimental value of 14.0 kcal/mol for the CsH;NH™(HCN)
cluster. Interestingly, HCN extended chain structures are more
frequent among the CsH;NHT(HCN), clusters as shown by
the low energy structures (2-b), (3-c), and (4-c).
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FIG. 4. Structures of pyridine HJr(HCN)li4 calculated by DFT at the M06-2x/6-31144G (d,p) level. Relative energies (RE) are the total electronic energies
with respect to the lowest energy isomer (0.0). Binding energies (AE) are corrected for zero-point energies (ZPE) and basis-set super position errors (BSSE).

Energies are in kcal/mol. Distances are in Angstrom.

B. Association of HCN with the pyrimidine
radical cation

Figure 5 displays the mass spectra obtained following
the injection of the mass-selected pyrimidine ion into the
drift cell containing either pure He or HCN vapor at different
temperatures. The first association product C,H,N,*+* (HCN)
is observed with 0.2 Torr HCN at 274 K and as the tem-
perature of the drift cell decreases higher association prod-
ucts C,H,N,*-(HCN), with n up to 4 are observed as
shown in Fig. 5. The ATDs of the C,H,N,*-(HCN),,
and C,H,N,*-(HCN), ions indicate the establishment of
equilibrium as shown in Figure S3 of the supplementary
material.>? The equilibrium constants for the stepwise asso-
ciation of HCN with C,H,N,** measured at different tem-

peratures yield the van’t Hoff plots shown in Figure 6, and
the resulting AH® and AS° values for the formation of the
C,H N, (HCN), clusters and calculated binding energies at
the M06-2X/6-3114+G(d,p) are listed in Table II.

The binding energy of HCN to the pyrimidine radical
cation (12 kcal/mol) is slightly higher than the correspond-
ing value for the pyridine cation (11.4 kcal/mol) and lower
than that of the protonated pyridine (14.0 kcal/mol). This
indicates that HCN binds to the pyrimidine cation via a
CH’*...NCH unconventional hydrogen bond, which is rel-
atively weaker than the IHB NH™- . .NCH formed with the
protonated pyridine. This also indicates that the pyrimidine
cation in our experiments has the conventional radical cation
structure (C4H,N,**) and not the distonic structure
(C,H;NNH) which would bind stronger to HCN.
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FIG. 5. Mass spectra resulting from the injection of the mass-selected pyrim-
idine radical cation (Pyrim) into helium gas or HCN vapor at different tem-
peratures using 12.4 eV injection energy (laboratory frame) and 4 V/cm ap-
plied field.

The DFT lowest energy structures of the
C,H,N,* (HCN), clusters with n = 1-4 calculated at
the M06-2X/6-311++4G(d,p) are shown in Figure 7. The
lowest energy structure of the C,H,N,* (HCN) complex
has a T-shaped ion-dipole structure with the N atom of HCN
pointing toward the center of the pyrimidine cation ring.
The second and third lowest energy structures represent
unconventional CH?*. . .NCH hydrogen bonds similar to the
structures found for the CsH;N++ (HCN) complex shown in
Fig. 3. The strongest H donor site in the pyrimidine cation

24

22

20

RIn K (cal. mol" K™)
>
1

. . ; . .
3.5 4.0 4.5 5.0 55

1000/T (K™
FIG. 6. van’t Hoff plots of the temperature dependence of the equilibrium

constants for the stepwise association of HCN with the pyrimidine radical
cation yielding CsH,N,* (HCN), with n = 1-4.
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TABLE II. Measured thermochemistry (—AH® , and —AS° | ) of the
formation of C;H,N,** (HCN), clusters; with n = 1-4 and the correspond-
ing calculated binding energies for the lowest energy structures.

Pyrimidine™* (HCN),

n —AH%? —AS°P AE (M06-2X)°
1 12.0 233 12.7

2 10.2 22.8 9.6

3 8.6 21.1 10.7

4 7.4 20.2 8.8
“AH"‘H’“ units are kcal/mol.

bAS® units are cal/mol K. Error estimate for experimental values from standard de-

n-Ln
viations of van’t Hoff and from usual uncertainties in clustering equilibrium temperature

studies: AH® £1 kcal/mol, AS°® %2 cal/mol K.
“Binding energy calculated at the M06-2X/6-311+4+G(d,p) level with ZPE and BSSE
corrections included.

is the one located between the two nitrogen atoms of the
ring and this site appears to form most of the non-bifurcated
H bonds with the nitrogen atom of the HCN molecule. The
calculated binding energies of C,H,N,* (HCN),, clusters
agree reasonably with the measured (—AH® ) except for
the C,;H,N,* - (HCN), cluster where the calculated binding
energy (10.7 kcal/mol) is significantly higher than the
measured —AH?, 5 value of 8.6 kcal/mol. This could indicate
that the structure of the C,H,N,*+ (HCN); cluster formed
under our experimental conditions may be different from the
calculated lowest energy structure which has the bifurcated
hydrogen bonding structures of one HCN molecule to two
CH’* groups of the ring and also two T-shaped ion-dipole
structures involving two HCN molecules. This complicated
structure may be kinetically unfavorable since the collisions
of HCN molecules with the lowest energy structure of the
C,H,N,* - (HCN), cluster (structure (2-a), Fig. 7) to form
structure (3-b) do not require further rearrangements of the
HCN molecules as in the case of structure (3-a).

Similar to the trend observed in the structures
of the pyridinet - (HCN), clusters, the formation of
the solvated cation structures are also observed in the
pyrimidine* - (HCN), clusters as shown in structures (4-a),
(4-b), and (4-c) displayed in Fig. 7 for the n = 4 cluster.

C. Comparison with the MP2/6-311++G(d,p)
level calculations

In order to compare the results of the DFI/MO06-
2X/6-311++G(d,p) calculations with a different method,
we carried out calculations on the CsH;N+-(HCN),
CsH;,NH*(HCN), and C,H,N,**(HCN) complexes at the
MP2/6-3114+G(d,p) level.”” The calculated lowest energy
structures, their relative energies, and binding energies of the
complexes are shown in Figure 8. The three lowest energy
structures of the pyridinet- and protonated pyridine com-
plexes with HCN are similar at both the DFT/M06-2X/6-
3114++G(d,p) and MP2/M06-2X/6-311+4G(d,p) levels as
shown by comparing the results shown in Figures 3, 4, and
8. The calculated binding energies using the two methods
are also similar. Interestingly, the overestimated binding en-
ergy of the pyridineHT (HCN) complex (16 kcal/mol with the
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FIG.7. Structures of the pyrimidine* - (HCN), , clusters calculated by DFT at the M06-2x/6-311++G (d,p) level. Relative energies (RE) are the total electronic
energies with respect to the lowest energy isomer (0.0). Binding energies (AE) are corrected for zero-point energies (ZPE) and basis-set super position errors

(BSSE). Energies are in kcal/mol. Distances are in Angstrom.

DFT/M06-2X/6-311++G(d,p) method as compared to the
experimental value of 14 kcal/mol) is also found using the
MP2/M06-2X/6-3114++G(d,p) method. This confirms the ac-
curacy of the calculations and could suggest that the experi-
mentally measured value may have some contribution from
the lower binding energy pyridine* - (HCN) complex (—AH®
= 11.4 kcal/mol, Table I). Considering the mass difference
between the pyridineH"(HCN) and pyridine+* (HCN) com-
plexes is only 1 amu, the possibility of having a mixture of
the pyridine radical cation and protonated pyridine in the ex-
periment cannot be eliminated.

The only major difference between the DFT and MP2
results is the order of the lowest energy structures of
the pyrimidine** (HCN) complex as shown from the com-
parison between the results shown in Figures 7 and 8.
While DFT predicts a T-shaped ion-dipole structure for

the C,H,N,* (HCN) complex (structure (1-a), Figure 7),
the MP2 method shows the unconventional hydrogen
bonding structure (CH®*...NCH) to be the lowest en-
ergy isomer (structure l-a-pyrimidinet'(HCN), Figure 8).
With the DFT method, the hydrogen bonding struc-
ture was the second lowest energy structure (structure
(1-b)) with only 0.4 kcal/mol lower binding energy than the
T-shaped structure (structure (1-a)) as shown in Figure 7.
However, with the MP2 method the T-shaped structure has
substantially lower binding energy (8.3 kcal/mol, structure
1-c-pyrimidine* - (HCN)) as compared to the hydrogen bond-
ing structure (12.2 kcal/mol, structure 1-a) as shown in
Figure 8 for the pyrimidinet - (HCN) complex. This indicates
that the hydrogen bonding structure ((1-b) in Fig. 7 and 1-a,
third row in Fig. 8) is most likely the lowest energy struc-
ture for the pyrimidinet- (HCN) complex. This could also
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FIG. 8. Structures of the pyridine™* (HCN), pyridineH*(HCN), and pyrimidine*+- (HCN) clusters calculated at the MP2/6-3114-+G(d,p) level. Relative ener-
gies (RE) are the total electronic energies with respect to the lowest energy isomer (0.0). Binding energies (AE) are corrected for zero-point energies (ZPE) and
basis-set super position errors (BSSE). Energies are in kcal/mol. Distances are in Angstrom.

suggest that the ion-dipole interaction is either underesti-
mated or overestimated with the MP2 and DFT methods,
respectively.

D. Comparison of HCN interactions
with the benzene, pyridine, pyrimidine radical
cations, and protonated pyridine

Table III shows a comparison of the sequential bind-
ing energies of 1-4 HCN molecules to the benzene, pyridine
and pyrimidine radical cations, and the protonated pyridine.
Figure 9 compares the trends in binding energies for the four
ions. The binding of HCN molecules to the benzene cation is
mostly due to unconventional CH**- . .NCH hydrogen bonds
directly connected to the CH®* sites of the benzene cation
and also hydrogen bonding chains (HCN. - -HCN) among the
HCN molecules. The small difference in the bond strength
of the two types of interactions results in relatively small
changes of (—AH® ) for n = 1-4 as shown in Fig. 9. HCN
binds more strongly to the pyridine and pyrimidine radical
cations due to the presence of stronger ion-dipole interactions

in addition to the CH**—NCH hydrogen bonding interac-
tions. The strongest binding is observed between the proto-
nated pyridine and HCN as a result of IHB that forms be-
tween the NH* group of the protonated pyridine and the N
atom of HCN. A significant drop in the binding energy (31%)
is observed upon the addition of the second HCN molecule
to the protonated pyridine in contrast to the smaller changes
observed upon the addition of the second HCN molecule to
the pyridine or pyrimidine radical cations (23%, and 15%, re-
spectively) as shown in Fig. 9. Despite the strong bonding of
HCN to protonated pyridine, the interaction decreases sharply
by further addition of HCN molecules and terminal binding
for the fourth HCN molecule is only 6.1 kcal/mol. In fact, in
all of the studied HCN clusters around ionized or protonated
aromatics,'’"!” the binding energies converge with the addi-
tion of 4-5 HCN molecules to the enthalpy of vaporization of
HCN liquid (AH°,), which is 6.0 kcal/mol at 298 K.**

As indicated earlier, HCN is a useful probe of non-
covalent interactions because it can serve both as a
hydrogen donor and as a lone-pair hydrogen acceptor in
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TABLE III. Measured binding energies (—AH® | , kcal/mol) of the step-
wise association of 1-4 HCN molecules with the benzene, pyridine and
pyrimidine radical cations, and protonated pyridine.

—AH® [X*(HCN), ]*

Benzene radical ~ Pyridine radical =~ Pyrimidine radical =~ Protonated
n cation® cation cation pyridine
1 9.2 11.4 12.0 14.0
2 8.0 8.8 10.2 9.7
3 75 7.8 8.6 8.5
4 7.3 6.4 7.4 6.1

“Error estimate for experimental values from standard deviations of van’t Hoff and from
usual uncertainties in clustering equilibrium temperature studies: AH° +1 kcal/mol,
AS® £2 cal/mol K.

PReference 17.

different types of hydrogen bonds. Therefore, it is instructive
to compare the structures of the HCN complexes of ionized
heterocyclic aromatics such as pyridine and pyrimidine radi-
cal cations with the corresponding neutral complexes. In the
neutral systems, e.g., pyridine- - -HCN, the existence of the
aromatic conjugated system and the localized lone pair of
electrons in pyridine provides the possibility of competitive
interactions for various types of hydrogen bonds. For exam-
ple, hydrogen bonding of the hydrogen atom in HCN to the
m-system of pyridine prefers the T-shaped geometry while
the interaction with the nitrogen lone pair of electrons leads
to planar structures since the lone pair is located in the plane
of the aromatic ring. However, in ionized aromatics only the
—CH’*.. .NCH type (or the -NH™- - .NCH in protonated pyri-
dine) of hydrogen bonds is observed since the T-shaped struc-
tures ((4-c), Fig. 3 and (1-a), (3-d), Fig. 7) do not involve
H-bonding as they represent ion-dipole interaction between
the positively charged ring and the negative end of the dipole
moment of HCN. It should be noted that the T-shaped hydro-
gen bonding of HCN to the -system of the neutral aromatic
becomes repulsive in ionized aromatics because of the posi-
tive charge on the ring and therefore, the HCN molecule must

9 —=— benzene
—e— pyridine
—A— Hpyridine
124 —w— pyrimidine
3
£
T 10+
<
T
T
8+
6 4

FIG. 9. Binding energy versus number of HCN molecules for the stepwise
association with the benzene, pyridine and pyrimidine radical cations, and
protonated pyridine.
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rotate 180° to adopt a new T-shaped structure where the nitro-
gen atom of HCN is now facing the positively charged ring as
in structures (1-a) and (3-d) in Fig. 7.

E. Applications in astrochemistry

Hydrogen cyanide is a significant component of inter-
stellar clouds and solar nebulae.!'"'* Aromatic molecules
such as benzene, pyridine, pyrimidine, and polycyclic aro-
matic hydrocarbons (PAHs) could produce stable molec-
ular ions under conditions of ionizing radiation. In these
low-temperature environments, HCN can condense on the
ions forming organic-doped ice grains. The protonation of
the aromatic molecules and PAHs could result in signifi-
cant binding of the polar space molecules such as HCN
to the even-electron ions. The present systems model these
processes, in particular, because the astrochemical con-
densation also involves stepwise addition of gas phase
molecules.

V. SUMMARY AND CONCLUSIONS

Equilibrium thermochemical measurements using the
ion mobility drift cell technique have been utilized to in-
vestigate the binding energies and entropy changes for the
stepwise association of HCN molecules with the pyridine
and pyrimidine radical cations forming the C;H;N+ - (HCN),
and C,H,N,*-(HCN), clusters, respectively, with n = 1-
4. For comparison, the binding of 1-4 HCN molecules to
the protonated pyridine C;H;NH'(HCN), has also been in-
vestigated. The binding energies of HCN to the pyridine
and pyrimidine radical cations are nearly equal (11.4 and
12.0 kcal/mol, respectively) but weaker than the HCN bind-
ing to the protonated pyridine (14.0 kcal/mol). The pyridine
and pyrimidine radical cations form unconventional carbon-
based ionic hydrogen bonds with HCN (CH’*...NCH).
Protonated pyridine forms a stronger ionic hydrogen bond
with HCN (NH™T-..NCH) which can be extended to a lin-
ear chain with the clustering of additional HCN molecules
(NH*...NCH - - NCH- - -NCH) leading to a rapid decrease in
the bond strength as the length of the chain increases. The
lowest energy structures of the pyridine and pyrimidine rad-
ical cation clusters containing 3-4 HCN molecules show a
strong tendency for the internal solvation of the radical cation
by the HCN molecules where bifurcated structures involving
multiple hydrogen bonding sites with the ring hydrogen atoms
are formed. The unconventional H-bonds (CH’*...NCH)
formed between the pyridine or the pyrimidine radical cations
and HCN molecules are stronger (11-12 kcal/mol) than the
similar (CH®**-..NCH) bonds formed between the benzene
radical cation and HCN molecules (9 kcal/mol) indicating
that the CH’" centers in the pyridine and pyrimidine radi-
cal cations have more effective charges than in the benzene
radical cation. HCN molecules can thus efficiently condense
on the pyridine and pyrimidine cations in the low temper-
ature space environments to form organic-doped ice grains
which could affect the chemistry of complex organics in
space.
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