332 research outputs found

    A Fault-Tolerant Two-Motor Drive With FCS-MP-Based Flux and Torque Control

    Get PDF
    Independently controlled multi-motor drives are typically realized by using a common dc link and independent sets of three-phase inverters and motors. In the case of an open-circuit fault in an inverter leg, one motor becomes single-phase. To enable continued controllable operation by eliminating single-phasing, the supply for the motor phase with the faulted inverter leg can be paralleled to a healthy leg of another inverter, using hardware reconfiguration. Hence, the two motors are now supplied from a five-leg inverter, which has inherent voltage and current limitations. Theoretically, violating the voltage limit leads to inverter over-modulation and large torque oscillations. It is shown here that the finite-control-set model predictive control (FCS-MPC), designed to control the machines’ stator flux and torque, can consider the inherent voltage limit dynamically in the control loop. Apart from preserving the independent control of the two machines, the additional constraint consideration significantly widens the operating speed ranges of the machines. In particular, it is shown that whenever the voltage limit is entered, the controller reduces the stator flux level automatically, without requiring external flux reference change. The obtained performance is illustrated using experimental results and is also compared to the conventional two-motor field-oriented control scheme. The control concept is thus fully experimentally verified

    Current Control Methods for an Asymmetrical Six-Phase Induction Motor Drive

    Get PDF
    Using the vector space decomposition approach, the currents in a multiphase machine with distributed winding can be decoupled into the flux and torque producing α-β components, and the loss-producing x-y and zero-sequence components. While the control of α-β currents is crucial for flux and torque regulation, control of x-y currents is important for machine/converter asymmetry and dead-time effect compensation. In this paper, an attempt is made to provide a physically meaningful insight into current control of a six-phase machine, by showing that the fictitious x-y currents can be physically interpreted as the circulating currents between the two three-phase windings. Using this interpretation, the characteristics of x-y currents due to the machine/converter asymmetry can be analyzed. The use of different types of x-y current controllers for asymmetry compensation and suppression of dead-time-induced harmonics is then discussed. Experimental results are provided throughout the paper, to underpin the theoretical considerations, using tests on a prototype asymmetrical six-phase induction machine. © 1986-2012 IEEE

    A Comparative Study of Synchronous Current Control Schemes Based on FCS-MPC and PI-PWM for a Two-Motor Three-Phase Drive

    Get PDF
    A two-motor drive, supplied by a five-leg inverter, is considered in this paper. The independent control of machines with full dc-bus voltage utilization is typically achieved using an existing pulsewidth modulation (PWM) technique in conjunction with field-oriented control, based on PI current control. However, model predictive control (MPC), based on a finite number of control inputs [finite-control-set MPC (FCS-MPC)], does not utilize a pulsewidth modulator. This paper introduces three FCS-MPC schemes for synchronous current control in this drive system. The first scheme uses all of the available switching states. The second and third schemes are aimed at reducing the computational burden and utilize a reduced set of voltage vectors and a duty ratio partitioning principle, respectively. Steady-state and transient performances are analyzed and compared both against each other and with respect to the field-oriented control based on PI controllers and PWM. All analyses are experimental and use the same experimental rig and test conditions. Comparison of the predictive schemes leads to the conclusion that the first two schemes have the fastest transient response. The third scheme has a much smaller current ripple while achieving perfect control decoupling between the machines and is of low computational complexity. Nevertheless, at approximately the same switching loss, the PI-PWM control yields the lowest current ripple but with slower electrical transient response. © 1982-2012 IEEE

    Postfault operation of an asymmetrical six-phase induction machine with single and two isolated neutral points

    Get PDF
    The paper presents a study of postfault control for an asymmetrical six-phase induction machine with single and two isolated neutral points, during single open-phase fault. Postfault control is based on the normal decoupling (Clarke) transformation, so that reconfiguration of the controller is minimized. Effect of the single open-phase fault on the machine equations under this control structure is discussed. Different modes of postfault operation are analyzed and are further compared in terms of the achievable torque and stator winding losses. Validity of the analysis is verified using experimental results obtained from a six-phase induction motor drive prototype. © 1986-2012 IEEE

    Operation of a Six-Phase Induction Machine Using Series-Connected Machine-Side Converters

    Get PDF
    This paper discusses the operation of a multiphase system, which is aimed at both variable-speed drive and generating (e.g., wind energy) applications, using back-to-back converter structure with dual three-phase machine-side converters. In the studied topology, an asymmetrical six-phase induction machine is controlled using two three-phase two-level voltage source converters connected in series to form a cascaded dc link. The suggested configuration is analyzed, and a method for dc-link midpoint voltage balancing is developed. Voltage balancing is based on the use of additional degrees of freedom that exist in multiphase machines and represents entirely new utilization of these degrees. The validity of the topology and its control is verified by simulation and experimental results on a laboratory-scale prototype, thus proving that it is possible to achieve satisfactory dc-link voltage control under various operating scenarios. © 1982-2012 IEEE

    Postfault Operation of an Asymmetrical Six-Phase Induction Machine With Single and Two Isolated Neutral Points

    Get PDF
    The paper presents a study of postfault control for an asymmetrical six-phase induction machine with single and two isolated neutral points, during single open-phase fault. Postfault control is based on the normal decoupling (Clarke) transformation, so that reconfiguration of the controller is minimized. Effect of the single open-phase fault on the machine equations under this control structure is discussed. Different modes of postfault operation are analyzed and are further compared in terms of the achievable torque and stator winding losses. Validity of the analysis is verified using experimental results obtained from a six-phase induction motor drive prototype

    Avapritinib versus regorafenib in locally advanced unresectable or metastatic GI stromal tumor: A randomized, open-label phase III study

    Get PDF
    PURPOSE Primary or secondary mutations in KIT or platelet-derived growth factor receptor alpha (PDGFRA) underlie tyrosine kinase inhibitor resistance in most GI stromal tumors (GISTs). Avapritinib selectively and potently inhibits KIT- and PDGFRA-mutant kinases. In the phase I NAVIGATOR study (NCT02508532), avapritinib showed clinical activity against PDGFRA D842V–mutant and later-line KIT-mutant GIST. VOYAGER (NCT03465722), a phase III study, evaluated efficacy and safety of avapritinib versus regorafenib as third-line or later treatment in patients with unresectable or metastatic GIST. PATIENTS AND METHODS VOYAGER randomly assigned patients 1:1 to avapritinib 300 mg once daily (4 weeks continuously) or regorafenib 160 mg once daily (3 weeks on and 1 week off). Primary end point was progression-free survival (PFS) by central radiology per RECIST version 1.1 modified for GIST. Secondary end points included objective response rate, overall survival, safety, disease control rate, and duration of response. Regorafenib to avapritinib crossover was permitted upon centrally confirmed disease progression. RESULTS Four hundred seventy-six patients were randomly assigned (avapritinib, n 5 240; regorafenib, n 5 236). Median PFS was not statistically different between avapritinib and regorafenib (hazard ratio, 1.25; 95% CI, 0.99 to 1.57; 4.2 v 5.6 months; P 5 .055). Overall survival data were immature at cutoff. Objective response rates were 17.1% and 7.2%, with durations of responses of 7.6 and 9.4 months for avapritinib and regorafenib; disease control rates were 41.7% (95% CI, 35.4 to 48.2) and 46.2% (95% CI, 39.7 to 52.8). Treatment-related adverse events (any grade, grade $ 3) were similar for avapritinib (92.5% and 55.2%) and regorafenib (96.2% and 57.7%). CONCLUSION Primary end point was not met. There was no significant difference in median PFS between avapritinib and regorafenib in patients with molecularly unselected, late-line GIST

    Extreme sensitivity of the spin-splitting and 0.7 anomaly to confining potential in one-dimensional nanoelectronic devices

    Full text link
    Quantum point contacts (QPCs) have shown promise as nanoscale spin-selective components for spintronic applications and are of fundamental interest in the study of electron many-body effects such as the 0.7 x 2e^2/h anomaly. We report on the dependence of the 1D Lande g-factor g* and 0.7 anomaly on electron density and confinement in QPCs with two different top-gate architectures. We obtain g* values up to 2.8 for the lowest 1D subband, significantly exceeding previous in-plane g-factor values in AlGaAs/GaAs QPCs, and approaching that in InGaAs/InP QPCs. We show that g* is highly sensitive to confinement potential, particularly for the lowest 1D subband. This suggests careful management of the QPC's confinement potential may enable the high g* desirable for spintronic applications without resorting to narrow-gap materials such as InAs or InSb. The 0.7 anomaly and zero-bias peak are also highly sensitive to confining potential, explaining the conflicting density dependencies of the 0.7 anomaly in the literature.Comment: 23 pages, 7 figure

    Generation of an NCS1 gene knockout human induced pluripotent stem cell line using CRISPR/Cas9

    Get PDF
    NCS1 (Neuronal calcium sensor protein 1) encodes a highly conserved calcium binding protein abundantly expressed in neurons. It modulates intracellular calcium homeostasis, calcium-dependent signaling pathways as well as neuronal transmission and plasticity. Here, we generated a NCS1 knockout human induced pluripotent stem cell (hiPSC) line using CRISPR-Cas9 genome editing. It shows regular expression of pluripotent markers, normal iPSC morphology and karyotype as well as no detectable off-target effects on top 6 potentially affected genes. This newly generated cell line constitutes a valuable tool for studying the role of NCS1 in the pathophysiology of various neuropsychiatric disorders and non-neurological disease
    • …
    corecore