6 research outputs found

    Solid State Proton Spin Relaxation in Ethylbenzenes: Methyl Reorientation Barriers and Molecular Structure

    Get PDF
    We have investigated the dynamics of the ethyl groups and their constituent methyl groups in polycrystalline ethylbenzene (EB), 1,2-diethylbenzene (1,2-DEB), 1,3-DEB, and 1,4-DEB using the solid state proton spin relaxation (SSPSR) technique. The temperature and Larmor frequency dependence of the Zeeman spin-lattice relaxation rate is reported and interpreted in terms of the molecular dynamics. We determine that only the methyl groups are reorienting on the nuclear magnetic resonance time scale. The observed barrier of about 12 kJ/mol for methyl group reorientation in the solid samples of EB, 1,2-DEB, and 1,3-DEB is consistent with that of the isolated molecule, implying that in the solid state, intermolecular electrostatic interactions play a minor role in determining the barrier. The lower barrier of 9.3 +/- 0.2 kJ/mol for the more symmetric 1,4-DEB suggests that the crystal structure is such that the minimum in the anisotropic part of the intramolecular potential is raised by the intermolecular interactions leading to a 3 kJ/mol decrease in the total barrier. We are able to conclude that the methyl group is well away from the plane of the benzene ring (most likely orthogonal to it) in all four molecules, and that in 1,2-DEB, the two ethyl groups are in the anticonfiguration. Our SSPSR results are compared with the results obtained by microwave spectroscopy and supersonic molecular jet laser spectroscopy, both of which determine molecular geometry better than SSPSR, but neither of which can determine ground electronic state barriers for these molecules

    Solid State Proton Spin Relaxation in Ethylbenzenes: Methyl Reorientation Barriers and Molecular Structure

    Get PDF
    We have investigated the dynamics of the ethyl groups and their constituent methyl groups in polycrystalline ethylbenzene (EB), 1,2-diethylbenzene (1,2-DEB), 1,3-DEB, and 1,4-DEB using the solid state proton spin relaxation (SSPSR) technique. The temperature and Larmor frequency dependence of the Zeeman spin-lattice relaxation rate is reported and interpreted in terms of the molecular dynamics. We determine that only the methyl groups are reorienting on the nuclear magnetic resonance time scale. The observed barrier of about 12 kJ/mol for methyl group reorientation in the solid samples of EB, 1,2-DEB, and 1,3-DEB is consistent with that of the isolated molecule, implying that in the solid state, intermolecular electrostatic interactions play a minor role in determining the barrier. The lower barrier of 9.3 +/- 0.2 kJ/mol for the more symmetric 1,4-DEB suggests that the crystal structure is such that the minimum in the anisotropic part of the intramolecular potential is raised by the intermolecular interactions leading to a 3 kJ/mol decrease in the total barrier. We are able to conclude that the methyl group is well away from the plane of the benzene ring (most likely orthogonal to it) in all four molecules, and that in 1,2-DEB, the two ethyl groups are in the anticonfiguration. Our SSPSR results are compared with the results obtained by microwave spectroscopy and supersonic molecular jet laser spectroscopy, both of which determine molecular geometry better than SSPSR, but neither of which can determine ground electronic state barriers for these molecules

    Management of coronary disease in patients with advanced kidney disease

    No full text
    BACKGROUND Clinical trials that have assessed the effect of revascularization in patients with stable coronary disease have routinely excluded those with advanced chronic kidney disease. METHODS We randomly assigned 777 patients with advanced kidney disease and moderate or severe ischemia on stress testing to be treated with an initial invasive strategy consisting of coronary angiography and revascularization (if appropriate) added to medical therapy or an initial conservative strategy consisting of medical therapy alone and angiography reserved for those in whom medical therapy had failed. The primary outcome was a composite of death or nonfatal myocardial infarction. A key secondary outcome was a composite of death, nonfatal myocardial infarction, or hospitalization for unstable angina, heart failure, or resuscitated cardiac arrest. RESULTS At a median follow-up of 2.2 years, a primary outcome event had occurred in 123 patients in the invasive-strategy group and in 129 patients in the conservative-strategy group (estimated 3-year event rate, 36.4% vs. 36.7%; adjusted hazard ratio, 1.01; 95% confidence interval [CI], 0.79 to 1.29; P=0.95). Results for the key secondary outcome were similar (38.5% vs. 39.7%; hazard ratio, 1.01; 95% CI, 0.79 to 1.29). The invasive strategy was associated with a higher incidence of stroke than the conservative strategy (hazard ratio, 3.76; 95% CI, 1.52 to 9.32; P=0.004) and with a higher incidence of death or initiation of dialysis (hazard ratio, 1.48; 95% CI, 1.04 to 2.11; P=0.03). CONCLUSIONS Among patients with stable coronary disease, advanced chronic kidney disease, and moderate or severe ischemia, we did not find evidence that an initial invasive strategy, as compared with an initial conservative strategy, reduced the risk of death or nonfatal myocardial infarction

    Literaturverzeichnis

    No full text
    corecore