1,982 research outputs found
Materials processing in space: Early experiments
The characteristics of the space environment were reviewed. Potential applications of space processing are discussed and include metallurgical processing, and processing of semiconductor materials. The behavior of fluid in low gravity is described. The evolution of apparatus for materials processing in space was reviewed
Compressive behavior of titanium alloy skin-stiffener specimens selectively reinforced with boron-aluminum composite
A method of selectively reinforcing a conventional titanium airframe structure with unidirectional boron-aluminum composite attached by brazing was successfully demonstrated in compression tests of short skin-stiffener specimens. In a comparison with all-titanium specimens, improvements in structural performance recorded for the composite-reinforced specimens exceeded 25 percent on an equivalent-weight basis over the range from room temperature to 700 K (800 F) in terms of both initial buckling and maximum strengths. Performance at room temperature was not affected by prior exposure at 588 K (600 F) for 1000 hours in air or by 400 thermal cycles between 219 K and 588 K (-65 F and 600 F). The experimental results were generally predictable from existing analytical procedures. No evidence of failure was observed in the braze between the boron-aluminum composite and the titanium alloy
Research on boron filaments and boron reinforced composites
Boron filaments for use as reinforcing phase in composite materials for aerospace structure
An exact study of charge-spin separation, pairing fluctuations and pseudogaps in four-site Hubbard clusters
An exact study of charge-spin separation, pairing fluctuations and pseudogaps
is carried out by combining the analytical eigenvalues of the four-site Hubbard
clusters with the grand canonical and canonical ensemble approaches in a
multidimensional parameter space of temperature (T), magnetic field (h),
on-site interaction (U) and chemical potential. Our results, near the average
number of electrons =3, strongly suggest the existence of a critical
parameter U_{c}(T) for the localization of electrons and a particle-hole
binding (positive) gap at U>U_{c}(T), with a zero temperature quantum critical
point, U_{c}(0)=4.584. For U<U_{c}(T), particle-particle pair binding is found
with a (positive) pairing gap. The ground state degeneracy is lifted at
U>U_c(T) and the cluster becomes a Mott-Hubbard like insulator due to the
presence of energy gaps at all (allowed) integer numbers of electrons. In
contrast, for U< U_c(T), we find an electron pair binding instability at finite
temperature near =3, which manifests a possible pairing mechanism, a
precursor to superconductivity in small clusters.
In addition, the resulting phase diagram consisting of charge and spin
pseudogaps, antiferromagnetic correlations, hole pairing with competing
hole-rich (=2), hole-poor (=4) and magnetic (=3) regions in the
ensemble of clusters near 1/8 filling closely resembles the phase diagrams and
inhomogeneous phase separation recently found in the family of doped high T_c
cuprates.Comment: 10 pages, 7 figure
Dewetting of an ultrathin solid film on a lattice-matched or amorphous substrate
An evolution partial differential equation for the surface of a non-wetting
single-crystal film in an attractive substrate potential is derived and used to
study the dynamics of a pinhole for the varying initial depth of a pinhole and
the strengths of the potential and the surface energy anisotropy. The results
of the simulations demonstrate how the corresponding parameters may lead to
complete or partial dewetting of the film. Anisotropy of the surface energy,
through faceting of the pinhole walls, is found to most drastically affect the
time to film rupture. In particular, the similations support the conjecture
that the strong anisotropy is capable of the complete suppression of dewetting
even when the attractive substrate potential is strong.Comment: Submitted to PR
Ferromagnetism in the Infinite-U Hubbard Model
We have studied the stability of the ferromagnetic state in the infinite-U
Hubbard model on a square lattice by approximate diagonalization of finite
lattices using the density matrix renormalization group technique. By studying
lattices with up to 5X20 sites, we have found the ferromagnetic state to be
stable below the hole density of 22 percent. Beyond 22 percent of hole doping,
the total spin of the ground state decreased gradually to zero with increasing
hole density.Comment: 13 pages, RevteX 3.0, seven figures appended in uuencoded form,
correcting problems with uuencoded figure
Self Consistent Expansion for the Molecular Beam Epitaxy Equation
Motivated by a controversy over the correct results derived from the dynamic
renormalization group (DRG) analysis of the non linear molecular beam epitaxy
(MBE) equation, a self-consistent expansion (SCE) for the non linear MBE theory
is considered. The scaling exponents are obtained for spatially correlated
noise of the general form . I find a lower critical dimension , above, which the linear MBE solution appears. Below the
lower critical dimension a r-dependent strong-coupling solution is found. These
results help to resolve the controversy over the correct exponents that
describe non linear MBE, using a reliable method that proved itself in the past
by predicting reasonable results for the Kardar-Parisi-Zhang (KPZ) system,
where DRG failed to do so.Comment: 16 page
Phase II Proof-of-Concept Trial of the Orexin Receptor Antagonist Filorexant (MK-6096) in Patients with Major Depressive Disorder.
BackgroundWe evaluated the orexin receptor antagonist filorexant (MK-6096) for treatment augmentation in patients with major depressive disorder.MethodsWe conducted a 6-week, double-blind, placebo-controlled, parallel-group, Phase II, proof-of-concept study. Patients with major depressive disorder (partial responders to ongoing antidepressant therapy) were randomized 1:1 to once-daily oral filorexant 10 mg or matching placebo.ResultsDue to enrollment challenges, the study was terminated early, resulting in insufficient statistical power to detect a prespecified treatment difference; of 326 patients planned, 129 (40%) were randomized and 128 took treatment. There was no statistically significant difference in the primary endpoint of change from baseline to week 6 in Montgomery Asberg Depression Rating Scale total score; the estimated treatment difference for filorexant-placebo was -0.7 (with negative values favoring filorexant) (P=.679). The most common adverse events were somnolence and suicidal ideation.ConclusionsThe interpretation of the results is limited by the enrollment, which was less than originally planned, but the available data do not suggest efficacy of orexin receptor antagonism with filorexant for the treatment of depression. (Clinical Trial Registry: clinicaltrials.gov: NCT01554176)
The Effect of Electronic Paramagnetism on Nuclear Magnetic Resonance Frequencies in Metals
Observations on the shifts of nuclear resonances in metals (Id {sup 7}, Na {sup 23}, Ou {sup 63}, Be {sup 9}, Fe {sup 207}, A1 {sup 27} and Oa {sup 69}) due to free electron paramagnetism; comparison with theoretical values
Exchange in silicon-based quantum computer architecture
The silicon-based quantum computer proposal has been one of the intensely
pursued ideas during the past three years. Here we calculate the donor electron
exchange in silicon and germanium, and demonstrate an atomic-scale challenge
for quantum computing in Si (and Ge), as the six (four) conduction band minima
in Si (Ge) lead to inter-valley electronic interferences, generating strong
oscillations in the exchange splitting of two-donor two-electron states. Donor
positioning with atomic scale precision within the unit cell thus becomes a
decisive factor in determining the strength of the exchange coupling--a
fundamental ingredient for two-qubit operations in a silicon-based quantum
computer.Comment: 5 pages, 2 figure
- …