research

Compressive behavior of titanium alloy skin-stiffener specimens selectively reinforced with boron-aluminum composite

Abstract

A method of selectively reinforcing a conventional titanium airframe structure with unidirectional boron-aluminum composite attached by brazing was successfully demonstrated in compression tests of short skin-stiffener specimens. In a comparison with all-titanium specimens, improvements in structural performance recorded for the composite-reinforced specimens exceeded 25 percent on an equivalent-weight basis over the range from room temperature to 700 K (800 F) in terms of both initial buckling and maximum strengths. Performance at room temperature was not affected by prior exposure at 588 K (600 F) for 1000 hours in air or by 400 thermal cycles between 219 K and 588 K (-65 F and 600 F). The experimental results were generally predictable from existing analytical procedures. No evidence of failure was observed in the braze between the boron-aluminum composite and the titanium alloy

    Similar works