1 research outputs found
La matriz K-Exponencial y soluciones de algunos sistemas de ecuaciones diferenciales
En el presente trabajo se definen las matrices k-exponencial y k-logarÃtmica, usando la representación en series de potencias que incorporan el parámetro real de deformación k definido por G. Kaniadakis para explicar fenómenos de la Mecánica EstadÃstica en el contexto de la relatividad especial, de tal forma que cuando el parámetro k tiende a cero, las matrices k-exponencial y k-logarÃtmica (con sus respectivas propiedades) se reducen a las de la matrices exponencial y logarÃtmica naturales, donde dichas matrices se relacionan como funciones matriciales inversas para matrices diagonalizables -- También se incursiona en sistemas (algunos de ellos acoplados) de ecuaciones diferenciales que pueden ser descritas en términos de k-derivadas en lugar de derivadas ordinarias (a las que se llamarán ecuaciones k-diferenciales), donde las matrices k-exponencial o k-logarÃtmica hacen parte de soluciones de dichos sistemas -- Para ello se presentan técnicas para resolver Ecuaciones k-diferenciales separables y lineales con coeficientes constante