10,593 research outputs found
Jahn-Teller Distortions and the Supershell Effect in Metal Nanowires
A stability analysis of metal nanowires shows that a Jahn-Teller deformation
breaking cylindrical symmetry can be energetically favorable, leading to stable
nanowires with elliptic cross sections. The sequence of stable cylindrical and
elliptical nanowires allows for a consistent interpretation of experimental
conductance histograms for alkali metals, including both the shell and
supershell structures. It is predicted that for gold, elliptical nanowires are
even more likely to form since their eccentricity is smaller than for alkali
metals. The existence of certain metastable ``superdeformed'' nanowires is also
predicted
Multiphoton Bloch-Siegert shifts and level-splittings in spin-one systems
We consider a spin-boson model in which a spin 1 system is coupled to an
oscillator. A unitary transformation is applied which allows a separation of
terms responsible for the Bloch-Siegert shift, and terms responsible for the
level splittings at anticrossings associated with Bloch-Siegert resonances.
When the oscillator is highly excited, the system can maintain resonance for
sequential multiphoton transitions. At lower levels of excitation, resonance
cannot be maintained because energy exchange with the oscillator changes the
level shift. An estimate for the critical excitation level of the oscillator is
developed.Comment: 14 pages, 3 figure
Cancer therapeutic potential of combinatorial immuno- and vaso-modulatory interventions
Currently, most of the basic mechanisms governing tumor-immune system
interactions, in combination with modulations of tumor-associated vasculature,
are far from being completely understood. Here, we propose a mathematical model
of vascularized tumor growth, where the main novelty is the modeling of the
interplay between functional tumor vasculature and effector cell recruitment
dynamics. Parameters are calibrated on the basis of different in vivo
immunocompromised Rag1-/- and wild-type (WT) BALB/c murine tumor growth
experiments. The model analysis supports that tumor vasculature normalization
can be a plausible and effective strategy to treat cancer when combined with
appropriate immuno-stimulations. We find that improved levels of functional
tumor vasculature, potentially mediated by normalization or stress alleviation
strategies, can provide beneficial outcomes in terms of tumor burden reduction
and growth control. Normalization of tumor blood vessels opens a therapeutic
window of opportunity to augment the antitumor immune responses, as well as to
reduce the intratumoral immunosuppression and induced-hypoxia due to vascular
abnormalities. The potential success of normalizing tumor-associated
vasculature closely depends on the effector cell recruitment dynamics and tumor
sizes. Furthermore, an arbitrary increase of initial effector cell
concentration does not necessarily imply a better tumor control. We evidence
the existence of an optimal concentration range of effector cells for tumor
shrinkage. Based on these findings, we suggest a theory-driven therapeutic
proposal that optimally combines immuno- and vaso-modulatory interventions
Coherent and Incoherent Vortex Flow States in Crossed Channels
We examine vortex flow states in periodic square pinning arrays with one row
and one column of pinning sites removed to create an easy flow crossed channel
geometry. When a drive is simultaneously applied along both major symmetry axes
of the pinning array such that vortices move in both channels, a series of
coherent flow states develop in the channel intersection at rational ratios of
the drive components in each symmetry direction when the vortices can cross the
intersection without local collisions. The coherent flow states are correlated
with a series of anomalies in the velocity force curves, and in some cases can
produce negative differential conductivity. The same general behavior could
also be realized in other systems including colloids, particle traffic in
microfluidic devices, or Wigner crystals in crossed one-dimensional channels.Comment: 5 pages, 4 postscript figure
Influence of the binding mode and many-body interactions
In the present contribution, the ultrafast photoinduced electron migration
dynamics at the interface between an alizarin dye and an anatase TiO2 thin
film is investigated from first principles. Comparison between a time-
dependent many-electron configuration interaction ansatz and a single active
electron approach sheds light on the importance of many-body effects, stemming
from uniquely defined initial conditions prior to photoexcitation. Particular
emphasis is put on understanding the influence of the binding mode on the
migration process. The dynamics is analyzed on the basis of a recently
introduced toolset in the form of electron yields, electronic fluxes, and flux
densities, to reveal microscopic details of the electron migration mechanism.
From the many-body perspective, insight into the nature of electron-electron
and hole-hole interactions during the charge transfer process is obtained. The
present results reveal that the single active electron approach yields
quantitatively and phenomenologically similar results as the many-electron
ansatz. Furthermore, the charge migration processes in the dye-TiO2 model
clusters with different binding modes exhibit similar mechanistic pathways but
on largely different time scales
Symmetries,Singularities and the De-Emergence of Space
Recent work has revealed intriguing connections between a
Belinsky-Khalatnikov-Lifshitz-type analysis of spacelike singularities in
General Relativity and certain infinite dimensional Lie algebras, and in
particular the `maximally extended' hyperbolic Kac--Moody algebra E10. In this
essay we argue that these results may lead to an entirely new understanding of
the (quantum) nature of space(-time) at the Planck scale, and hence -- via an
effective `de-emergence' of space near a singularity -- to a novel mechanism
for achieving background independence in quantum gravity.Comment: 10 page
Frohlich mass in GaAs-based structures
The Frohlich interaction is one of the main electron-phonon intrinsic
interactions in polar materials originating from the coupling of one itinerant
electron with the macroscopic electric field generated by any longitudinal
optical (LO) phonon. Infra-red magneto-absorption measurements of doped GaAs
quantum wells structures have been carried out in order to test the concept of
Frohlich interaction and polaron mass in such systems. These new experimental
results lead to question the validity of this concept in a real system.Comment: 4 pages, 3 figure
- …