10,593 research outputs found

    Jahn-Teller Distortions and the Supershell Effect in Metal Nanowires

    Full text link
    A stability analysis of metal nanowires shows that a Jahn-Teller deformation breaking cylindrical symmetry can be energetically favorable, leading to stable nanowires with elliptic cross sections. The sequence of stable cylindrical and elliptical nanowires allows for a consistent interpretation of experimental conductance histograms for alkali metals, including both the shell and supershell structures. It is predicted that for gold, elliptical nanowires are even more likely to form since their eccentricity is smaller than for alkali metals. The existence of certain metastable ``superdeformed'' nanowires is also predicted

    Multiphoton Bloch-Siegert shifts and level-splittings in spin-one systems

    Full text link
    We consider a spin-boson model in which a spin 1 system is coupled to an oscillator. A unitary transformation is applied which allows a separation of terms responsible for the Bloch-Siegert shift, and terms responsible for the level splittings at anticrossings associated with Bloch-Siegert resonances. When the oscillator is highly excited, the system can maintain resonance for sequential multiphoton transitions. At lower levels of excitation, resonance cannot be maintained because energy exchange with the oscillator changes the level shift. An estimate for the critical excitation level of the oscillator is developed.Comment: 14 pages, 3 figure

    Cancer therapeutic potential of combinatorial immuno- and vaso-modulatory interventions

    Get PDF
    Currently, most of the basic mechanisms governing tumor-immune system interactions, in combination with modulations of tumor-associated vasculature, are far from being completely understood. Here, we propose a mathematical model of vascularized tumor growth, where the main novelty is the modeling of the interplay between functional tumor vasculature and effector cell recruitment dynamics. Parameters are calibrated on the basis of different in vivo immunocompromised Rag1-/- and wild-type (WT) BALB/c murine tumor growth experiments. The model analysis supports that tumor vasculature normalization can be a plausible and effective strategy to treat cancer when combined with appropriate immuno-stimulations. We find that improved levels of functional tumor vasculature, potentially mediated by normalization or stress alleviation strategies, can provide beneficial outcomes in terms of tumor burden reduction and growth control. Normalization of tumor blood vessels opens a therapeutic window of opportunity to augment the antitumor immune responses, as well as to reduce the intratumoral immunosuppression and induced-hypoxia due to vascular abnormalities. The potential success of normalizing tumor-associated vasculature closely depends on the effector cell recruitment dynamics and tumor sizes. Furthermore, an arbitrary increase of initial effector cell concentration does not necessarily imply a better tumor control. We evidence the existence of an optimal concentration range of effector cells for tumor shrinkage. Based on these findings, we suggest a theory-driven therapeutic proposal that optimally combines immuno- and vaso-modulatory interventions

    Coherent and Incoherent Vortex Flow States in Crossed Channels

    Full text link
    We examine vortex flow states in periodic square pinning arrays with one row and one column of pinning sites removed to create an easy flow crossed channel geometry. When a drive is simultaneously applied along both major symmetry axes of the pinning array such that vortices move in both channels, a series of coherent flow states develop in the channel intersection at rational ratios of the drive components in each symmetry direction when the vortices can cross the intersection without local collisions. The coherent flow states are correlated with a series of anomalies in the velocity force curves, and in some cases can produce negative differential conductivity. The same general behavior could also be realized in other systems including colloids, particle traffic in microfluidic devices, or Wigner crystals in crossed one-dimensional channels.Comment: 5 pages, 4 postscript figure

    Influence of the binding mode and many-body interactions

    Get PDF
    In the present contribution, the ultrafast photoinduced electron migration dynamics at the interface between an alizarin dye and an anatase TiO2 thin film is investigated from first principles. Comparison between a time- dependent many-electron configuration interaction ansatz and a single active electron approach sheds light on the importance of many-body effects, stemming from uniquely defined initial conditions prior to photoexcitation. Particular emphasis is put on understanding the influence of the binding mode on the migration process. The dynamics is analyzed on the basis of a recently introduced toolset in the form of electron yields, electronic fluxes, and flux densities, to reveal microscopic details of the electron migration mechanism. From the many-body perspective, insight into the nature of electron-electron and hole-hole interactions during the charge transfer process is obtained. The present results reveal that the single active electron approach yields quantitatively and phenomenologically similar results as the many-electron ansatz. Furthermore, the charge migration processes in the dye-TiO2 model clusters with different binding modes exhibit similar mechanistic pathways but on largely different time scales

    Symmetries,Singularities and the De-Emergence of Space

    Full text link
    Recent work has revealed intriguing connections between a Belinsky-Khalatnikov-Lifshitz-type analysis of spacelike singularities in General Relativity and certain infinite dimensional Lie algebras, and in particular the `maximally extended' hyperbolic Kac--Moody algebra E10. In this essay we argue that these results may lead to an entirely new understanding of the (quantum) nature of space(-time) at the Planck scale, and hence -- via an effective `de-emergence' of space near a singularity -- to a novel mechanism for achieving background independence in quantum gravity.Comment: 10 page

    Frohlich mass in GaAs-based structures

    Full text link
    The Frohlich interaction is one of the main electron-phonon intrinsic interactions in polar materials originating from the coupling of one itinerant electron with the macroscopic electric field generated by any longitudinal optical (LO) phonon. Infra-red magneto-absorption measurements of doped GaAs quantum wells structures have been carried out in order to test the concept of Frohlich interaction and polaron mass in such systems. These new experimental results lead to question the validity of this concept in a real system.Comment: 4 pages, 3 figure
    • …
    corecore