7 research outputs found
Quel impact de la génomique végétale sur l’innovation variétale : l’exemple du projet PeaMUST. Le génome du pois: vers de nouvelles strategies de sélection.
International audienceL’avancée des technologies « nouvelle génération » de séquençage de l’ADN permettent une connaissance de plus en plus poussée des génomes et de leur expression. Ces connaissances permettent d’approcher plus finement les déterminants moléculaires des traits phénotypiques et ouvrent des perspectives d’augmentation du progrès génétique dans le cadre de la sélection variétale. Le pois est une espèce modèle depuis les travaux de G. Mendel conduisant à la découverte des lois de l’hérédité. La séquence du génome de cette espèce longtemps délaissée des approches de génomique a récemment été obtenue par un consortium international piloté par l’INRAE (1,2). Dans le cadre du projet de recherche français PeaMUST regroupant un large partenariat entre secteurs public et privé, différentes stratégies tirant partie de ces connaissances ont été mises en oeuvre pour améliorer le pois (3). Ces stratégies varient en fonction des caractères ciblés : pour améliorer la régularité du rendement, un trait hautement multifactoriel qui résulte de la capacité des plantes à s'adapter et à répondre à l'environnement, une approche de sélection à l’échelle du génome entier a été testée ; pour la résistance durable aux pathogènes, une stratégie prometteuse est de pyramider plusieurs gènes de résistance correspondant à des mécanismes divers ; enfin, des mutations à effet majeur contrôlant l’architecture aérienne et racinaire des plantes ont été testées pour leur effet sur la tolérance aux stress. L'amélioration des cultures doit en effet plusieurs réussites remarquables à la manipulation de l'architecture végétale, comme l'utilisation des caractères afila et de nanisme chez le pois.PeaMust is an international program on pea breeding goals and techniques and pea genomics. Two convergent achievements testify to its pertinence. It associates the complete sequencing and deciphering of the DNA on one hand with efficient genetic approaches to phenotype analysis and methods dealing with quantitative and adaptative traits on the other. Examples of PeaMust successbear on regularity of production, on the confrontation with pathogens or environmental stress, on the architecture of the plant. In each case PeaMust offers innovative opportunities
The Pea genome and after …
International audienceHaving a genome sequence available is a critical step towards unravelling functional diversity andestablishing genome-enabled breeding. The recently generated pea genome sequence represents a great toolfor genomicists, geneticists and breeders not only for the pea community but also for legume research. In thegenome project, re-sequencing data revealed the considerable diversity present in the Pisum genus. In thePeaMUST project, an unprecedented effort was made to genotype large pea collections using the exomecapture technology. This high-density SNP data was exploited in genome-wide association studies (GWAS) ona large number of traits related to yield, as well as response to biotic and abiotic stresses. Comparative GWASand meta-QTL analysis identified important putative loci involved in the control of yield and its components inpea. Furthermore, genomic selection strategies have been developed in order to tackle complex traits such asyield regularity and improve selection efficiency. We will present snapshots of these results and discusspotential transfer of knowledge from pea to related crops
Genomic selection programs for yield stability in pea
Genomic selection is a breeding method that uses increasingly abundant genomic information and statistical modelling to select superior genotypes based on genomic estimated breeding values (GEBV). The aims of the PeaMUST work-package1 are: 1- to build a genomic selection prediction equation for yield stability inl ow-input cropping systems, 2- to implement a genomic selection program and, 3- to evaluate the genetic progress obtained after one and two genomic selection cycles. A classical GEBV breeding scheme was defined
The Pea genome and after …
International audienceHaving a genome sequence available is a critical step towards unravelling functional diversity andestablishing genome-enabled breeding. The recently generated pea genome sequence represents a great toolfor genomicists, geneticists and breeders not only for the pea community but also for legume research. In thegenome project, re-sequencing data revealed the considerable diversity present in the Pisum genus. In thePeaMUST project, an unprecedented effort was made to genotype large pea collections using the exomecapture technology. This high-density SNP data was exploited in genome-wide association studies (GWAS) ona large number of traits related to yield, as well as response to biotic and abiotic stresses. Comparative GWASand meta-QTL analysis identified important putative loci involved in the control of yield and its components inpea. Furthermore, genomic selection strategies have been developed in order to tackle complex traits such asyield regularity and improve selection efficiency. We will present snapshots of these results and discusspotential transfer of knowledge from pea to related crops
The Pea genome and after …
International audienceHaving a genome sequence available is a critical step towards unravelling functional diversity andestablishing genome-enabled breeding. The recently generated pea genome sequence represents a great toolfor genomicists, geneticists and breeders not only for the pea community but also for legume research. In thegenome project, re-sequencing data revealed the considerable diversity present in the Pisum genus. In thePeaMUST project, an unprecedented effort was made to genotype large pea collections using the exomecapture technology. This high-density SNP data was exploited in genome-wide association studies (GWAS) ona large number of traits related to yield, as well as response to biotic and abiotic stresses. Comparative GWASand meta-QTL analysis identified important putative loci involved in the control of yield and its components inpea. Furthermore, genomic selection strategies have been developed in order to tackle complex traits such asyield regularity and improve selection efficiency. We will present snapshots of these results and discusspotential transfer of knowledge from pea to related crops
Towards genome-wide breeding for yield stability in spring pea
National audienceField pea (Pisum sativum L.) is an attractive crop for human and livestock nutrition and an important contributor to low-input farming systems. Multiple environmental challenges face field pea production and penalize yield regularity. The work-package 1 of the French National ANR project PeaMUST aims at identifying efficient gene combinations for yield stability in low-input cropping systems through genomic selection. Genomic selection is a new breeding method that uses increasingly abundant genomic information and statistical modelling to select superior genotypes based on genomic estimated breeding values (GEBVs). The main goals are: 1- to build a genomic selection prediction equation for yield stability in low-input cropping systems, 2- to implement a genomic selection program and, 3- to evaluate the genetic progress obtained after one and two genomic selection cycles
The pea genome and beyond
International audienceThe recently generated pea genome sequence is a significant step for the pea research community towards unravelling functional diversity and establishing genome-enabled breeding. Re-sequencing data reveal the considerable diversity present in the Pisum genus. High-throughput genotyping is now available to explore large collections using the exome capture technology in genome-wide association studies (GWAS) or tackle map-based QTL cloning. Furthermore, genomic selection strategies have been developed in order to tackle complex traits such as yield regularity and improve selection efficiency. We will present snapshots of these results and discuss potential transfer of knowledge from pea to related crops