123 research outputs found

    Evolution of Teeth and Quadrate in Non-avian Theropoda (Dinosauria: Saurischia), with the Description of Torvosaurus Remains from Portugal

    Get PDF
    Theropods form a highly successful and morphologically diversified group of dinosaurs that gave rise to birds. They include most, if not all, carnivorous dinosaurs, yet many theropod clades were secondarily adapted to piscivory, omnivory and herbivory, and theropods show a large array of skull and dentition morphologies. This work aims to investigate aspects of the evolution of theropod dinosaurs by analyzing in detail both the anatomy and ontogeny of teeth and quadrates in non-avian theropods, and by studying embryonic and adult material of a new species of theropod. A standardized list of terms and notations for each anatomical entity of the tooth, quadrate, and maxilla is here proposed with the goal of facilitating descriptions of these important cranial and dental elements. The distribution of thirty dental characters among 113 theropod taxa is investigated, and a list of diagnostic dental characters is proposed. As an example, four isolated theropod teeth from the Lourinhã Formation (Kimmeridgian‒Tithonian) of Portugal are described and identified based on a cladistic analysis performed on a data matrix of 141 dentition-based characters coded in 60 taxa. Two shed teeth are referred to an abelisaurid, providing the first record of Abelisauridae in the Jurassic of Laurasia and the one of the oldest records of this clade in the world, suggesting a possible radiation of Abelisauridae in Europe well before the Upper Cretaceous. The consensus tree resulting from this phylogenetic analysis, the most extensive on theropod teeth, indicates that theropod teeth provide reliable data for identification at approximately family level, and this method will help identifying theropod teeth with more confidence. A detailed description of the dentition of Megalosauridae is also provided, and a discriminant analysis performed on a dataset of numerical data collected on the teeth of 62 theropod taxa reveals that megalosaurid teeth are hardly distinguishable from other theropod clades with ziphodont dentition. This study highlights the importance of detailing anatomical descriptions and providing additional morphometric data on teeth with the purpose of helping to identify isolated theropod teeth. In order to evaluate the phylogenetic potential and investigate the evolutionary transformations of the quadrate, a phylogenetic morphometric analysis as well as a cladistic analysis using 98 discrete quadrate related characters were conducted. The quadrate morphology by its own provides a wealth of data with strong phylogenetic signal, and the phylogenetic morphometric analysis reveals two main morphotypes of the mandibular articulation of the quadrate linked to function. As an example, six isolated quadrates from the Kem Kem beds (Cenomanian) of Morocco are determined to be from juvenile and adult individuals of Spinosaurinae based on phylogenetic, morphometric, and phylogenetic morphometric analyses. Morphofunctional analysis of the spinosaurid mandibular articulation has shown that the posterior parts of the two mandibular rami displaced laterally when the jaw was depressed due to a mediolaterally oriented intercondylar sulcus of the quadrate. Such lateral movement of the mandibular ramus was possible due to a movable mandibular symphysis in spinosaurids, allowing the pharynx to be widened. A new species of theropod from the Lourinhã Formation of Portugal, Torvosaurus gurneyi, is erected based on a right maxilla and an incomplete caudal centrum. This taxon supports the mechanism of vicariance that occurred in the Iberian Meseta during the Late Jurassic when the proto-Atlantic was already well formed. A theropod clutch containing several crushed eggs and embryonic material is also assigned to this new species of Torvosaurus. Investigation on the maxilla ontogeny in basal tetanurans reveals that crown denticles, elongation of the anterior ramus, and fusion of interdental plates appear at a posthatchling stage. On the other hand, maxillary pneumaticity is already present at an embryonic stage in non-avian theropods.Fundação para a Ciência e a Tecnologia (FCT) - scholarship SFRH/BD/62979/200

    The Effect of Climate Change on Inland Waterway Transport

    Get PDF
    AbstractGenerally, inland waterway transport (IWT) is characterised by a high degree of reliability and safety compared to other transport modes. Against the background of the climate change debate however, new concerns are starting to raise attention. IWT is expected to be more sensitive to climate change aspects than other transport modes, e.g. in terms of water level fluctuations and resulting effects on costs and reliability.The present paper specifically addresses the topic of adaptation to climate change, taking IWT as a case-study. The results figuring in the paper are based on the results of the EC funded ECCONET project, which is an interdisciplinary project combining the expertise gained from climatology, hydrology, transport-economics, ship building and inland waterway management. A quantitative approach is applied, using the results of existing climate ensembles, hydrological results from KLIWAS and the transport network models TRANSTOOLS and NODUS.The paper starts first with an overview of expected effects of climate change on the Rhine and Danube. Adaptation measures are evaluated in function of their cost-effectiveness, given the expected impact of climate change on the navigation conditions.The main concern for adaptation is coping with periods of low water levels, as these were empirically established as the most influential for the sector. We consider four focal points for adaptation: fleet- and transport related strategies, operational concepts, improvement of forecasting tools and adaptation of production procedures and storekeeping

    Kinematics and geomorphological changes of a destabilising rock glacier captured from close-range sensing techniques (Tsarmine rock glacier, Western Swiss Alps)

    Get PDF
    Accurately assessing landform evolution and quantifying rapid environmental changes are gaining importance in the context of monitoring techniques in alpine environments. In the European Alps, glaciers and rock glaciers are among the most characteristic cryospheric components bearing long and systematic monitoring periods. The acceleration in rock glacier velocities and the onset of destabilization processes, mainly since 1990, have raised several concerns due to the potential effects on the high alpine natural and anthropic environments. This study presents a combination of uncrewed aerial vehicle (UAV) and terrestrial laser scanning (TLS) surveys for monitoring the current changes on the quickly accelerating, destabilised Tsarmine rock glacier in the Arolla Valley, Western Swiss Alps, delivering a considerable volume of debris to a steep torrential gully. High-resolution digital elevation models (DEMs) and orthomosaics are derived from UAV image series combined with structure from motion (SfM) photogrammetry techniques. Multitemporal orthomosaics are employed for measuring spatially continuous rock glacier kinematics using image matching algorithms. Superficial displacements are evaluated with simultaneous in-situ differential global navigation satellite system (GNSS) measurements. Elevation and volume changes are computed from TLS and UAV-derived DEMs at similar periods. Between June 2017 and September 2019, both datasets showed a similar elevation change pattern and surface thinning rates of 0.15 ± 0.04 and 0.16 ± 0.03 m yr−1, respectively. Downward of a rupture zone developing about 150 m above the front, the rock glacier doubled its overall velocity during the study period, from around 5 m yr−1 between October 2016 and June 2017 to more than 10 m yr−1 between June and September 2019. The kinematic information reveals striking differences in the velocity between the lower and upper rock glacier sections. The monitoring approach based on close-sensing techniques provides accurate surface velocity and volume change information, allowing an enhanced description of the current rock glacier dynamics and its surface expression

    Oldest preserved umbilical scar reveals dinosaurs had ‘belly buttons’

    Get PDF
    Background: In egg-laying amniotes, the developing embryo is tethered to a number of the extraembryonic membranes including the yolk sac and allantois that deliver oxygen and nutrients and remove metabolic waste products throughout embryonic development. Prior to, or soon after hatching, these membranes detach from the animal leaving a temporary or permanent umbilical scar (umbilicus) equivalent to the navel or ‘belly button’ in some placental mammals, including humans. Although ubiquitous in modern mammals and reptiles (including birds), at least early in their ontogeny, the umbilicus has not been identified in any pre-Cenozoic amniote. Results: We report the oldest preserved umbilicus in a fossil amniote from a ~130-million-year-old early-branching ceratopsian dinosaur, Psittacosaurus. Under laser-stimulated fluorescence (LSF), the umbilicus is revealed as an elongate midline structure delimited by a row of paired scales on the abdomen. The relatively late ontogenetic stage (close to sexual maturity) estimated for the individual indicates that the umbilicus was probably retained throughout life. Conclusions: Unlike most extant reptiles and birds that lose this scar within days to weeks after hatching, the umbilicus of Psittacosaurus persisted at least until sexual maturity, similar to some lizards and crocodylians with which it shares the closest morphological resemblance. This discovery is the oldest record of an amniote umbilicus and the first in a non-avian dinosaur. However, given the variability of this structure in extant reptilian analogues, a persistent umbilical scar may not have been present in all non-avian dinosaurs.Fil: Bell, Phil R.. University Of New England Australia; AustraliaFil: Hendrickx, Christophe Marie Fabian. Fundación Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Pittman, Michael. Colegio Universitario de Londres; Reino UnidoFil: Kaye, Thomas G.. Foundation For Scientific Advancement; Estados Unido

    The pre-eminence of the Karoo Basin in the knowledge of the Permo-Jurassic cynodonts: A historical synthesis and taxonomical quantification

    Get PDF
    The search for the ancestors of mammals is historically connected with the extensive Karoo Basin of South Africa. This is because the Karoo features some of the largest exposures of Permo-Jurassic terrestrial deposits in the world and fossil discoveries were made here early in the history of palaeontology. Among the mammal-like lineages that are well-represented in Karoo fossil assemblages are the cynodonts. Originally conceived as a group exclusively containing fossil taxa, Cynodontia was subsequently redefined to include living mammals, and its Permian and early Mesozoic members are now referred to as non-mammaliaform cynodonts. Here we present a historical account of the research programme on non-mammaliaform cynodonts in the Karoo Basin, which represent the most important record of this group in the world. It covers a time spanning from the first named species in 1859 until the present day, which we arbitrarily divided into three periods: the Early Period extending from 1859 until 1932, the Second Period from 1933 to 1982, and theCurrent Period from 1983 until now. In the context of the global record of named species, we present quantitative analyses documenting the total number of nominal non-mammaliaform cynodont species from the Karoo (including junior synonyms and homonyms) as well as numerical comparison with taxa currently considered valid. Lastly, we compare the record of non-mammaliaform cynodont species from South Africa with other places in the world, such as Argentina and Brazil, which also have a diverse record of this group.Fil: Abdala, Nestor Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; Argentina. University of the Witwatersrand; SudáfricaFil: Hendrickx, Christophe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Jasinoski, Sandra C.. University of the Witwatersrand; SudáfricaFil: Gaetano, Leandro Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina. University of the Witwatersrand; SudáfricaFil: Liu, Jun. Chinese Academy of Sciences; República de Chin

    The exquisitely preserved integument of Psittacosaurus and the scaly skin of ceratopsian dinosaurs

    Get PDF
    The Frankfurt specimen of the early-branching ceratopsian dinosaur Psittacosaurus is remarkable for the exquisite preservation of squamous (scaly) skin and other soft tissues that cover almost its entire body. New observations under Laser-Stimulated Fluorescence (LSF) reveal the complexity of the squamous skin of Psittacosaurus, including several unique features and details of newly detected and previously-described integumentary structures. Variations in the scaly skin are found to be strongly regionalized in Psittacosaurus. For example, feature scales consist of truncated cone-shaped scales on the shoulder, but form a longitudinal row of quadrangular scales on the tail. Re-examined through LSF, the cloaca of Psittacosaurus has a longitudinal opening, or vent; a condition that it shares only with crocodylians. This implies that the cloaca may have had crocodylian-like internal anatomy, including a single, ventrally-positioned copulatory organ. Combined with these new integumentary data, a comprehensive review of integument in ceratopsian dinosaurs reveals that scalation was generally conservative in ceratopsians and typically consisted of large subcircular-to-polygonal feature scales surrounded by a network of smaller non-overlapping polygonal basement scales. This study highlights the importance of combining exceptional specimens with modern imaging techniques, which are helping to redefine the perceived complexity of squamation in ceratopsians and other dinosaurs.Fil: Bell, Phil R.. University Of New England; AustraliaFil: Hendrickx, Christophe Marie Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; Argentina. Fundación Miguel Lillo; ArgentinaFil: Pittman, Michael. Chinese University Of Hong Kong; Hong Kong. Foundation For Scientific Advancement; Estados UnidosFil: Kaye, Thomas G.. Foundation For Scientific Advancement; Estados UnidosFil: Mayr, Gerald. Senckenberg Forschungsinstitut Und Naturmuseum; Alemani

    Ni-Al alloys as alternative EUV mask absorber

    Get PDF
    Extreme ultraviolet (EUV) lithography is being industrialized as the next candidate printing technique for high-volume manufacturing of scaled down integrated circuits. At mask level, the combination of EUV light at oblique incidence, absorber thickness, and non-uniform mirror reflectance through incidence angle, creates photomask-induced imaging aberrations, known as mask 3D (M3D) effects. A possible mitigation for the M3D effects in the EUV binary intensity mask (BIM), is to use mask absorber materials with high extinction coefficient k and refractive coefficient n close to unity. We propose nickel aluminide alloys as a candidate BIM absorber material, and characterize them versus a set of specifications that a novel EUV mask absorber must meet. The nickel aluminide samples have reduced crystallinity as compared to metallic nickel, and form a passivating surface oxide layer in neutral solutions. Composition and density profile are investigated to estimate the optical constants, which are then validated with EUV reflectometry. An oxidation-induced Al L2 absorption edge shift is observed, which significantly impacts the value of n at 13.5 nm wavelength and moves it closer to unity. The measured optical constants are incorporated in an accurate mask model for rigorous simulations. The M3D imaging impact of the nickel aluminide alloy mask absorbers, which predict significant M3D reduction in comparison to reference absorber materials. In this paper, we present an extensive experimental methodology flow to evaluate candidate mask absorber materials

    Isolated theropod teeth associated with a sauropod skeleton from the Late Cretaceous Allen Formation of Río Negro, Patagonia, Argentina

    Get PDF
    The discovery of theropod shed teeth associated with sauropod remains is relatively common in Cretaceous deposits of Patagonia. However, only a handful of studies have thoroughly explored the phylogenetic affinities of the theropod dental material. Here, we describe and identify twelve theropod shed teeth associated with a partially complete skeleton of a titanosaur sauropod from the Allen Formation (middle Campanian?lower Maastrichtian; Upper Cretaceous) of Paso Córdoba, Río Negro, Argentina. Using three methods, namely a cladistic analysis performed on a dentition-based data matrix, and a discriminant and cluster analyses conducted on a large dataset of theropod teeth measurements, we identify three dental morphotypes which are confidently referred to abelisaurid theropods. Whether the morphotypes represent different abelisaurid subclades or different positional entities within the jaw of the same abelisaurid species, is unknown. Such an identification, nevertheless, provides additional evidence of abelisaurids feeding on sauropod carcasses. This study highlights the importance of using combined qualitative and quantitative methodologies to identify isolated theropod teeth, especially those that can provide direct information on feeding ecology.Fil: Meso, Jorge Gustavo. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación en Paleobiología y Geología; ArgentinaFil: Hendrickx, Christophe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Baiano, Mattia Antonio. Provincia del Neuquén. Municipalidad de Plaza Huincul. Museo "Carmen Funes"; Argentina. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación en Paleobiología y Geología; ArgentinaFil: Canale, Juan Ignacio. Universidad Nacional de Río Negro; Argentina. Provincia del Neuquén. Municipalidad de Villa El Chocón. Museo Paleontológico "Ernesto Bachmann"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación en Paleobiología y Geología; ArgentinaFil: Salgado, Leonardo. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación en Paleobiología y Geología; ArgentinaFil: Díaz Martínez, Ignacio. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación en Paleobiología y Geología; Argentin

    Dental anatomy of the apex predator Sinraptor Dongi (Theropoda: Allosauroidea) from the late Jurassic of China

    Get PDF
    The dental morphology of the holotype of the theropod Sinraptor dongi from the Jurassic Shishugou Formation of China is comprehensively described. We highlight a combination of dental features that appear to be restricted to Sinraptor: (i) crowns with denticulated mesial and distal carinae extending from the root and an irregular surface texture on the enamel; (ii) a D- to salinon-shaped cross-sectional outline at the crown base in mesialmost teeth; (iii) mesial crowns with mesial carinae spiraling mesiolingually and lingually positioned longitudinal groove adjacent to the mesial carina; and (iv) particularly labiolingually compressed lateral teeth with weakly labially deflected distal carinae, flat to concave basocentral surfaces of the labial margins of the crowns, and horizontally elongated distal denticles showing short to well-developed interdenticular sulci. Using cladistic, multivariate, discriminant, and cluster analyses, we demonstrate that the dentition of Sinraptor is relatively similar to that of ceratosaurids, megalosauroids, and other allosauroids and is particularly close to that of Allosaurus. The dental anatomy of Sinraptor and Allosaurus, which differs mainly in the labiolingual compression of the lateral crowns and in the number of premaxillary teeth, shows adaptations towards a predatory lifestyle, including premaxillary teeth capable of enduring tooth-tobone contact and crowns with widely separated mesial and distal carinae capable of inflicting widely open wounds.Fil: Hendrickx, Christophe Marie Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Stiegler, Josef. The George Washington University; Estados UnidosFil: Currie, Philip J.. University of Alberta; CanadáFil: Han, Fenglu. University of Geoscience; ChinaFil: Xu, Xing. Chinese Academy of Sciences; República de ChinaFil: Choiniere, Jonah N.. University of the Witwatersrand; SudáfricaFil: Wu, Xiao Chung. Canadian Museum of Nature; Canad
    corecore