511 research outputs found
Magnetic calculus and semiclassical trace formulas
The aim of these notes is to show how the magnetic calculus developed in
\cite{MP, IMP1, IMP2, MPR, LMR} permits to give a new information on the nature
of the coefficients of the expansion of the trace of a function of the magnetic
Schr\"odinger operator whose existence was established in \cite{HR2}
Applications of Magnetic PsiDO Techniques to Space-adiabatic Perturbation Theory
In this review, we show how advances in the theory of magnetic
pseudodifferential operators (magnetic DO) can be put to good use in
space-adiabatic perturbation theory (SAPT). As a particular example, we extend
results of [PST03] to a more general class of magnetic fields: we consider a
single particle moving in a periodic potential which is subjectd to a weak and
slowly-varying electromagnetic field. In addition to the semiclassical
parameter \eps \ll 1 which quantifies the separation of spatial scales, we
explore the influence of additional parameters that allow us to selectively
switch off the magnetic field.
We find that even in the case of magnetic fields with components in
, e. g. for constant magnetic fields, the results of
Panati, Spohn and Teufel hold, i.e. to each isolated family of Bloch bands,
there exists an associated almost invariant subspace of and an
effective hamiltonian which generates the dynamics within this almost invariant
subspace. In case of an isolated non-degenerate Bloch band, the full quantum
dynamics can be approximated by the hamiltonian flow associated to the
semiclassical equations of motion found in [PST03].Comment: 32 page
A generalized virial theorem and the balance of kinetic and potential energies in the semiclassical limit
We obtain two-sided bounds on kinetic and potential energies of a bound state
of a quantum particle in the semiclassical limit, as the Planck constant
\hbar\ri 0.
Proofs of these results rely on the generalized virial theorem obtained in
the paper as well as on a decay of eigenfunctions in the classically forbidden
region
On the third critical field in Ginzburg-Landau theory
Using recent results by the authors on the spectral asymptotics of the
Neumann Laplacian with magnetic field, we give precise estimates on the
critical field, , describing the appearance of superconductivity in
superconductors of type II. Furthermore, we prove that the local and global
definitions of this field coincide. Near only a small part, near the
boundary points where the curvature is maximal, of the sample carries
superconductivity. We give precise estimates on the size of this zone and decay
estimates in both the normal (to the boundary) and parallel variables
Eigenfunctions decay for magnetic pseudodifferential operators
We prove rapid decay (even exponential decay under some stronger assumptions)
of the eigenfunctions associated to discrete eigenvalues, for a class of
self-adjoint operators in defined by ``magnetic''
pseudodifferential operators (studied in \cite{IMP1}). This class contains the
relativistic Schr\"{o}dinger operator with magnetic field
On spectral minimal partitions II, the case of the rectangle
In continuation of \cite{HHOT}, we discuss the question of spectral minimal
3-partitions for the rectangle , with . It has been observed in \cite{HHOT} that when
the minimal 3-partition is obtained by the three
nodal domains of the third eigenfunction corresponding to the three rectangles
, and . We will describe a possible mechanism of transition for increasing
between these nodal minimal 3-partitions and non nodal minimal
3-partitions at the value and discuss the existence of
symmetric candidates for giving minimal 3-partitions when . Numerical analysis leads very naturally to nice questions
of isospectrality which are solved by introducing Aharonov-Bohm Hamiltonians or
by going on the double covering of the punctured rectangle
- …
