7 research outputs found

    Building Integrated Photovoltaics (BIPV): Review, Potentials, Barriers and Myths

    Get PDF
    To date, none of the predictions that have been made about the emerging BIPV industry have really hit the target. The anticipated boom has so far stalled and despite developing and promoting a number of excellent systems and products, many producers around the world have been forced to quit on purely economic grounds. The authors believe that after this painful cleansing of the market, a massive counter trend will follow, enlivened and carried forward by more advanced PV technologies and ever-stricter climate policies designed to achieve energy neutrality in a cost-effective way. As a result, the need for BIPV products for use in construction will undergo first a gradual and then a massive increase. The planning of buildings with multifunctional, integrated roof and façade elements capable of fulfilling the technical and legal demands will become an essential, accepted part of the architectonic mainstream and will also contribute to an aesthetic valorisation. Until then, various barriers need to be overcome in order to facilitate and accelerate BIPV. Besides issues related to mere cost-efficiency ratio, psychological and social factors also play an evident role. The goal of energy change linked to greater use of renewables can be successfully achieved only when all aspects are taken into account and when visual appeal and energy efficiency thus no longer appear to be an oxymoro

    Building Integrated Photovoltaics (BIPV): Review, Potentials, Barriers and Myths

    Get PDF
    To date, none of the predictions that have been made about the emerging BIPV industry have really hit the target. The anticipated boom has so far stalled and despite developing and promoting a number of excellent systems and products, many producers around the world have been forced to quit on purely economic grounds. The authors believe that after this painful cleansing of the market, a massive counter trend will follow, enlivened and carried forward by more advanced PV technologies and ever- stricter climate policies designed to achieve energy neutrality in a cost-effective way. As a result, the need for BIPV products for use in construction will undergo first a gradual and then a massive increase. The planning of buildings with multifunctional, integrated roof and façade elements capable of fulfilling the technical and legal demands will become an essential, accepted part of the architectonic mainstream and will also contribute to an aesthetic valorisation. Until then, various barriers need to be overcome in order to facilitate and accelerate BIPV. Besides issues related to mere cost-efficiency ratio, psychological and social factors also play an evident role. The goal of energy change linked to greater use of renewables can be successfully achieved only when all aspects are taken into account and when visual appeal and energy efficiency thus no longer appear to be an oxymoron

    New challenges in solar architectural innovation

    Get PDF
    Among the century’s main challenges, climate change and the need for energy sources diversification are of great importance. In this context, renewable energies undoubtedly have an important role to play. Photovoltaic (PV) electricity is especially well suited to face these energy challenges. It is now established that the low thin film photovoltaic panels production costs will allow, even in continental climate, to reach low electricity cost, providing easy installation, public acceptance and high reliability. However, architectural considerations are often neglected in the current integration of PV panels. Taking into consideration specific architectural aspects like the surface appearance and the colour of the PV modules can become the key for the successful development of new, well integrated solar systems. To achieve this goal, our team, within the Archinsolar [1] project framework, works on the development of new generation of photovoltaic elements based on silicon thin films technologies (amorphous and micromoph). These new elements will be ultra-reliable and manufacturable at a very low cost, allowing a good architectural integration, respectful of the environment, landscape and built environment. Genera

    Innovative Solution for Building Integrated Photovoltaics

    Get PDF
    Among the main challenges of our century, the climate change and the need of diversification of the energy sources are of most importance. Renewable energies undoubtedly have an important role to play, photovoltaic (PV) electricity being especially well suited to face these energy challenges. However, the current integration of PV panels often comes without architectural consideration. In this context, the Archinsolar project [1] aims to develop a new generation of photovoltaic elements based on silicon thin films technologies (amorphous and micromorph), ultra-reliable and manufacturable at a very low cost, allowing a unique architectural integration, respectful of the bui lt environment and overall landscape. Here we will present our new developments on innovative PV elements including colored PV panels and a solar tile using a composite back-structure

    Solar module and its production process

    No full text
    The present invention relates to a solar module comprising a front sheet (30), an amorphous silicon photoelectric device (32) comprising at least a transparent front electrode layer (34), a p-type doped silicon layer (36), an intrinsic silicon layer (38), a n-type doped silicon layer (40), and a transparent back electrode layer (42), a back reflector (44), and a back sheet (46). The intrinsic silicon layer (38) of the amorphous silicon photoelectric device (32) has a thickness comprised between 50nm and 300nm, and preferably comprised between 100 nm and 200 nm. Moreover, the solar module further comprises, between the amorphous silicon photoelectric device (32) and the back reflector (44), a colored encapsulant layer (48) which comprises a coloring agent chosen in such a way that the solar module has a color within a region defined by an x value of 0.15to 0.75 and a y value of 0.10 to 0.70, and preferably defined by an x value of 0.28 to 0.65 and a y value of 0.20 to 0.50, in a chromaticity diagram of a CIE 1931 Yxy color system. Such solar modules have a uniform terracotta color similar to the color of traditional roof tiles and can be easily incorporated into the architecture of the buildings
    corecore