13,506 research outputs found
Ionizing radiation exposure of LDEF
The Long Duration Exposure Facility (LDEF) was launched into orbit by the Space Shuttle 'Challenger' mission 41C on 6 April 1984 and was deployed on 8 April 1984. The original altitude of the circular orbit was 258.5 nautical miles (479 km) with the orbital inclination being 28.5 degrees. The 21,500 lb NASA Langley Research Center satellite, having dimensions of some 30x14 ft was one of the largest payloads ever deployed by the Space Shuttle. LDEF carried 57 major experiments and remained in orbit five years and nine months (completing 32,422 orbits). It was retrieved by the Shuttle 'Columbia' on January 11, 1990. By that time, the LDEF orbit had decayed to the altitude of 175 nm (324 km). The experiments were mounted around the periphery of the LDEF on 86 trays and involved the representation of more than 200 investigators, 33 private companies, 21 universities, seven NASA centers, nine Department of Defense laboratories and eight foreign countries. The experiments covered a wide range of disciplines including basic science, electronics, optics, materials, structures, power and propulsion. The data contained in the LDEF mission represents an invaluable asset and one which is not likely to be duplicated in the foreseeable future. The data and the subsequent knowledge which will evolve from the analysis of the LDEF experiments will have a very important bearing on the design and construction of the Space Station Freedom and indeed on other long-term, near-earth orbital space missions. A list of the LDEF experiments according to experiment category and sponsor is given, as well as a list of experiments containing radiation detectors on LDEF including the LDEF experiment number, the title of the experiment, the principal investigator, and the type of radiation detectors carried by the specific experiment
ESF-EMBO symposium "molecular biology and innovative therapies in sarcomas of childhood and adolescence" Sept 29–Oct 4, Polonia Castle Pultusk, Poland
Rhabdomyosarcoma (RMS) and Ewing sarcoma (ES) are among the most common pediatric sarcomas (Arndt et al., 2012). Despite sarcomas representing a highly heterogeneous group of tumors, ES and alveolar RMS (ARMS) typically share one common genetic characteristic, namely a specific chromosomal translocation (Helman and Meltzer, 2003; Lessnick and Ladanyi, 2012). These translocations generate fusion proteins, which are composed of two transcription factors (TF). Typically, one TF is a developmentally regulated factor that is essential for proper specification of a given lineage and provides the DNA-binding domain, while the partner TF contributes a transactivation domain that drives aberrant expression of target genes. Based on these common genetic characteristics, the first ESF-EMBO research conference entitled “Molecular Biology and Innovative Therapies in Sarcomas of Childhood and Adolescence” with special focus on RMS and ES was held at the Polonia Castle in Pultusk, Poland. The conference gathered 70 participants from more than 15 countries and several continents representing most research groups that are active in this field
Single magnetic adsorbates on s-wave superconductors
In superconductors, magnetic impurities induce a pair-breaking potential for
Cooper pairs, which locally affects the Bogoliubov quasiparticles and gives
rise to Yu-Shiba-Rusinov (YSR or Shiba, in short) bound states in the density
of states (DoS). These states carry information on the magnetic coupling
strength of the impurity with the superconductor, which determines the
many-body ground state properties of the system. Recently, the interest in
Shiba physics was boosted by the prediction of topological superconductivity
and Majorana modes in magnetically coupled chains and arrays of Shiba
impurities. Here, we review the physical insights obtained by scanning
tunneling microscopy into single magnetic adsorbates on the -wave
superconductor lead (Pb). We explore the tunneling processes into Shiba states,
show how magnetic anisotropy affects many-body excitations, and determine the
crossing of the many-body groundstate through a quantum phase transition.
Finally, we discuss the coupling of impurities into dimers and chains and their
relation to Majorana physics.Comment: 18 pages, 17 figures, revie
Intranasal insulin to improve developmental delay in children with 22q13 deletion syndrome: an exploratory clinical trial
Background: The 22q13 deletion syndrome (Phelan–
McDermid syndrome) is characterised by a global
developmental delay, absent or delayed speech, generalised
hypotonia, autistic behaviour and characteristic
phenotypic features. Intranasal insulin has been shown to
improve declarative memory in healthy adult subjects and
in patients with Alzheimer disease.
Aims: To assess if intranasal insulin is also able to
improve the developmental delay in children with 22q13
deletion syndrome.
Methods: We performed exploratory clinical trials in six
children with 22q13 deletion syndrome who received
intranasal insulin over a period of 1 year. Short-term
(during the first 6 weeks) and long-term effects (after
12 months of treatment) on motor skills, cognitive
functions, or autonomous functions, speech and communication,
emotional state, social behaviour, behavioural
disorders, independence in daily living and education were
assessed.
Results: The children showed marked short-term
improvements in gross and fine motor activities, cognitive
functions and educational level. Positive long-term effects
were found for fine and gross motor activities, nonverbal
communication, cognitive functions and autonomy.
Possible side effects were found in one patient who
displayed changes in balance, extreme sensitivity to touch
and general loss of interest. One patient complained of
intermittent nose bleeding.
Conclusions: We conclude that long-term administration
of intranasal insulin may benefit motor development,
cognitive functions and spontaneous activity in children
with 22q13 deletion syndrome
Cross sections for the production of fragments with Z greater than or equal to 8 by fragmentation of Z greater than or equal to 9 and less than or equal to 26 nuclei
Charge changing nuclear collisions in plastic nuclear track detectors were studied using a new experimental technique of automatic track measurement for etched tracks in plastic detectors. Partial cross sections for the production of fragments of charge Z approximately 8 were measured for projectile nuclei of charge 9 approximately Z approximately 26 in the detector material CR39 and in silver. for this purpose three independent experiments were performed using Bevalac beams. The first one was an exposure of a stack of CR39 plastic plates to 1.8 GeV/nucl. Ar-40 nuclei. The second one was an exposure of another CR39 stack of 1.7 GeV/nucl. Fe-56 projectiles. In the third experiment a mixed stack of CR39 plates and silver foils was irradiated with 1.7 GeV/nucl. Fe-56 nuclei. Thus the measurement of nuclear cross sections in a light target (CR39 = C12H18O7) and as well in a heavy target (silver) was possible
Tuning the magnetic anisotropy of single molecules
The magnetism of single atoms and molecules is governed by the atomic scale
environment. In general, the reduced symmetry of the surrounding splits the
states and aligns the magnetic moment along certain favorable directions. Here,
we show that we can reversibly modify the magnetocrystalline anisotropy by
manipulating the environment of single iron(II) porphyrin molecules adsorbed on
Pb(111) with the tip of a scanning tunneling microscope. When we decrease the
tip--molecule distance, we first observe a small increase followed by an
exponential decrease of the axial anisotropy on the molecules. This is in
contrast to the monotonous increase observed earlier for the same molecule with
an additional axial Cl ligand. We ascribe the changes in the anisotropy of both
species to a deformation of the molecules in the presence of the attractive
force of the tip, which leads to a change in the level alignment. These
experiments demonstrate the feasibility of a precise tuning of the magnetic
anisotropy of an individual molecule by mechanical control.Comment: 16 pages, 5 figures; online at Nano Letters (2015
Lobbying and political polarization
Standard spatial models of political competition give rise to equilibria in which the competing political parties or candidates converge to a common position. In this paper I show how political polarization can be generated in models that focus on the nexus between pre-election interest group lobbying and electoral competition
Crack barriers improve the mechanical and thermal properties of non-metallic sinter materials
Means of improving the tensile strength of ceramic composites by introducing ductile intermediate layers capable of absorbing the elastic energy at the rupture front are studied. Tests with an Al203 laminate with niobium inclusions showed that crack propagation could be successfully precluded by dissipation of the energy by deformation and/or delamination at the inclusion/matrix interface
- …