270 research outputs found

    Impact of LC measurements on SUSY Higgs sectors

    Get PDF
    Trabajo presentado al International Workshop on Future Linear Colliders (LCWS), celebrado en Sendai (Japón) del 28 de octubre al 1 de noviembre de 2019

    The Impact of Two-Loop Effects on the Scenario of MSSM Higgs Alignment without Decoupling

    Full text link
    In multi-Higgs models, the properties of one neutral scalar state approximate those of the Standard Model (SM) Higgs boson in a limit where the corresponding scalar field is roughly aligned in field space with the scalar doublet vacuum expectation value. In a scenario of alignment without decoupling, a SM-like Higgs boson can be accompanied by additional scalar states whose masses are of a similar order of magnitude. In the Minimal Supersymmetric Standard Model (MSSM), alignment without decoupling can be achieved due to an accidental cancellation of tree-level and radiative loop-level effects. In this paper we assess the impact of the leading two-loop O(alpha_s h_t^2) corrections on the Higgs alignment condition in the MSSM. These corrections are sizable and important in the relevant regions of parameter space and furthermore give rise to solutions of the alignment condition that are not present in the approximate one-loop description. We provide a comprehensive numerical comparison of the alignment condition obtained in the approximate one-loop and two-loop approximations, and discuss its implications for phenomenologically viable regions of the MSSM parameter space.Comment: 31 pages, 7 figure

    Reconciling EFT and hybrid calculations of the light MSSM Higgs-boson mass

    Full text link
    Various methods are used in the literature for predicting the lightest CP-even Higgs boson mass in the Minimal Supersymmetric Standard Model (MSSM). Fixed-order diagrammatic calculations capture all effects at a given order and yield accurate results for scales of supersymmetric (SUSY) particles that are not separated too much from the weak scale. Effective field theory calculations allow a resummation of large logarithmic contributions up to all orders and therefore yield accurate results for a high SUSY scale. A hybrid approach, where both methods have been combined, is implemented in the computer code FeynHiggs. So far, however, at large scales sizeable differences have been observed between FeynHiggs and other pure EFT codes. In this work, the various approaches are analytically compared with each other in a simple scenario in which all SUSY mass scales are chosen to be equal to each other. Three main sources are identified that account for the major part of the observed differences. Firstly, it is shown that the scheme conversion of the input parameters that is commonly used for the comparison of fixed-order results is not adequate for the comparison of results containing a series of higher-order logarithms. Secondly, the treatment of higher-order terms arising from the determination of the Higgs propagator pole is addressed. Thirdly, the effect of different parametrizations in particular of the top Yukawa coupling in the non-logarithmic terms is investigated. Taking into account all of these effects, in the considered simple scenario very good agreement is found for scales above 1 TeV between the results obtained using the EFT approach and the hybrid approach of FeynHiggs.Comment: 31 pages, 5 figures, matches version published in EPJ

    Applying Exclusion Likelihoods from LHC Searches to Extended Higgs Sectors

    Get PDF
    LHC searches for non-standard Higgs bosons decaying into tau lepton pairs constitute a sensitive experimental probe for physics beyond the Standard Model (BSM), such as Supersymmetry (SUSY). Recently, the limits obtained from these searches have been presented by the CMS collaboration in a nearly model-independent fashion - as a narrow resonance model - based on the full 8 TeV dataset. In addition to publishing a 95% C.L. exclusion limit, the full likelihood information for the narrow resonance model has been released. This provides valuable information that can be incorporated into global BSM fits. We present a simple algorithm that maps an arbitrary model with multiple neutral Higgs bosons onto the narrow resonance model and derives the corresponding value for the exclusion likelihood from the CMS search. This procedure has been implemented into the public computer code HiggsBounds (version 4.2.0 and higher). We validate our implementation by cross-checking against the official CMS exclusion contours in three Higgs benchmark scenarios in the Minimal Supersymmetric Standard Model (MSSM), and find very good agreement. Going beyond validation, we discuss the combined constraints of the tau tau search and the rate measurements of the SM-like Higgs at 125 GeV in a recently proposed MSSM benchmark scenario, where the lightest Higgs boson obtains SM-like couplings independently of the decoupling of the heavier Higgs states. Technical details for how to access the likelihood information within HiggsBounds are given in the appendix. The program is available at http://higgsbounds.hepforge.org.Comment: 24 pages, 6 figures; The code can be downloaded from http://higgsbounds.hepforge.or

    BR report and plans for YR4

    Get PDF
    Trabajo presentado al 9th Workshop of the LHC Higgs Cross Section Working Group, celebrado en Zurich del 22 al 24 de enero de 2015.Peer Reviewe

    Uncertainties in the lightest MSSM Higgs-Boson mass: mt renormalization scheme dependence

    Get PDF
    Trabajo presentado al 3rd Katharsis of Ultimate Theory Standards (KUTS) Workshop, celebrado en Paris (Francia) del 18 al 20 de mayo de 2015.Peer Reviewe
    • …
    corecore