Uncertainties in the lightest MSSM Higgs-Boson Mass:

m_t Renormalization Scheme Dependence

Sven Heinemeyer, IFCA (CSIC, Santander)

Paris, 05/2015

mostly based on collaboration with S. Borowka, T. Hahn, G. Heinrich, W. Hollik

From my talk at KUTS 2:

Options for the evaluation of intrinsic uncertainties (II):

- 5. Compare different renormalizations. Still possible?
- 6. Variation of m_t to investigate the size of *non-logarithmic* missing corrections (as it is now done in *FeynHiggs* for the sub-leading $O\left(\alpha_t \alpha_s + \alpha_t^2\right)$ corrections).
- 7. Intrinsic uncertainties are often split into momentum dependent and independent part. Keep this? Make use of newly evaluated $\mathcal{O}\left(\alpha_s \alpha_t p^2\right)$ corrections.
- 8. ???

 \Rightarrow some new results, based on FH2.11.1 and arXiv:1505.03133

Evaluate M_h in two RS for m_t

RS1: m_t OS

RS2: $m_t \overline{\text{DR}}$ (MSSM)

Stop sector always OS

$$\begin{split} m_t^{\overline{\text{DR}}}(\mu) &= m_t \cdot \left[1 + \frac{\delta m_t^{\text{fin}}}{m_t} + \mathcal{O}\left(\left(\alpha_s^{\overline{\text{DR}}} \right)^2 \right) \right] \\ \frac{\delta m_t^{\text{fin}}}{m_t} &= \alpha_s^{\overline{\text{DR}}}(\mu) \left(-\frac{5}{3\pi} + \frac{1}{\pi} \log(m_t^2/\mu^2) + \frac{m_{\tilde{g}}^2}{3m_t^2 \pi} \left(-1 + \log(m_{\tilde{g}}^2/\mu^2) \right) \right. \\ &+ \frac{1}{6m_t^2 \pi} \left(m_{\tilde{t}_1}^2 (1 - \log(m_{\tilde{t}_1}^2/\mu^2)) + m_{\tilde{t}_2}^2 (1 - \log(m_{\tilde{t}_2}^2/\mu^2)) \right. \\ &+ \left(m_{\tilde{g}}^2 + m_t^2 - m_{\tilde{t}_1}^2 - 2m_{\tilde{g}} m_t \sin(2\theta_t) \right) \text{Re}[B_0^{\text{fin}}(m_t^2, m_{\tilde{g}}^2, m_{\tilde{t}_1}^2)] \\ &+ \left(m_{\tilde{g}}^2 + m_t^2 - m_{\tilde{t}_2}^2 + 2m_{\tilde{g}} m_t \sin(2\theta_t) \right) \text{Re}[B_0^{\text{fin}}(m_t^2, m_{\tilde{g}}^2, m_{\tilde{t}_2}^2)] \right) \end{split}$$

Ensure that the "physics" does not change:

⇒ shift soft SUSY-breaking parameters such that stop masses do not change

$$M_{\tilde{t}_L}^2 \to M_{\tilde{t}_L}'^2 = M_{\tilde{t}_L}^2 + (m_t^{\text{OS}})^2 - (m_t^{\overline{\text{DR}}})^2$$
$$M_{\tilde{t}_R}^2 \to M_{\tilde{t}_R}'^2 = M_{\tilde{t}_R}^2 + (m_t^{\text{OS}})^2 - (m_t^{\overline{\text{DR}}})^2$$
$$A_t \to A_t' = \frac{m_t^{\text{OS}}}{m_t^{\overline{\text{DR}}}} \left(A_t - \frac{\mu}{\tan\beta}\right) + \frac{\mu}{\tan\beta}$$

 \Rightarrow to be refined in the future . . .

Three "loop-level":

(i) full one-loop (ii) ... plus $\mathcal{O}(\alpha_t \alpha_s)$ (iii) ... plus $\mathcal{O}(p^2 \alpha_t \alpha_s)$

Two renormalization schemes:

RS1: m_t OS RS2: m_t DR (MSSM)

M_A dependence in m_h^{max} scenario:

M_A dependence in light-stop scenario:

$m_{\tilde{g}}$ dependence in m_h^{max} scenario:

$m_{\tilde{q}}$ dependence in light-stop scenario:

X_t dependence in m_h^{max} scenario:

X_t dependence in light-stop scenario:

Back-up

M_A dependence in m_h^{max} scenario:

M_A dependence in light-stop scenario:

$m_{\tilde{g}}$ dependence in m_h^{max} scenario:

$m_{\tilde{q}}$ dependence in light-stop scenario:

X_t dependence in m_h^{max} scenario:

X_t dependence in light-stop scenario:

