9 research outputs found

    Improving Decision Support During High Impact Weather Through Data Analysis and Visual Communication

    Get PDF
    Rain-on-snow is linked to many of the largest floods in the Western United States. Forecasting runoff in snow-covered areas prone to flooding is complicated due to the difficult nature of predicting and observing the rain-snow transition elevation and the variation in runoff efficiency and magnitude when snow is present. Looking at forecasts, reservoir operators must constantly weigh decisions to store water for economic and ecological benefits (managing water as a resource) or to release water to mitigate downstream flooding potential (managing water as a hazard). Rain-on-snow events will continue to increase in frequency and magnitude as the climate warms. This change will multiply uncertainties and risks in operational decision-making related to extreme weather. To meet these mounting challenges, this dissertation explores the feasibility for an empirically-based Snowpack Runoff Decision Support system, which considers the likelihood of snowmelt runoff through risk quantification. The research is coupled with a literature review to identify and apply the best practices for visual communication of weather hazards. The dissertation aims to develop a conceptual snowpack runoff decision support framework tested at a regional scale in collaboration with relevant decision-makers over the period 2006-2023. To facilitate broad and efficient communication, this approach also incorporates the guiding principles from graphic design and social science for visual communication of the snowpack's potential to modulate rain-on-snow events

    Snowmelt-triggered debris flows in seasonal snowpacks

    Get PDF
    Snowmelt-triggered debris flows commonly occur in mountains. On 14 June 2019, a debris flow occurred on a steep, east-facing slope composed of unconsolidated glacial and periglacial sediments in Yosemite National Park. Originating as a shallow landslide, ~1,300m3 of ripe snow was instantaneously entrained into the debris flow carrying boulders, trees, and soil downslope. The forested area at the toe of the slope strained out debris leaving a muddy slurry to issue across Highway 120 during dewatering. We document this mass movement and assesses its initiation using local snowpack and meteorological data as well as a regional atmospheric reanalysis to examine synoptic conditions. A multiday warming trend and ripening of the snowpack occurred prior to the event as a 500 hPa ridge amplified over western North America leading to record warm 700 hPa temperatures. Anomalous temperatures and cloud cover prevented refreezing of the snowpack and accelerated its ripening with meltwater contributing to soil saturation. Similar conditions occurred during the catastrophic 1983 Slide Mountain debris flow, also hypothesized to be snowmelt initiated. With projected increases in heat waves, our findings can support natural hazard early warning systems in snow-dominated environments

    Snowmelt-triggered debris flows in seasonal snowpacks

    No full text
    Snowmelt-triggered debris flows commonly occur in mountains. On 14 June 2019, a debris flow occurred on a steep, east-facing slope composed of unconsolidated glacial and periglacial sediments in Yosemite National Park. Originating as a shallow landslide, ~1,300m3 of ripe snow was instantaneously entrained into the debris flow carrying boulders, trees, and soil downslope. The forested area at the toe of the slope strained out debris leaving a muddy slurry to issue across Highway 120 during dewatering. We document this mass movement and assesses its initiation using local snowpack and meteorological data as well as a regional atmospheric reanalysis to examine synoptic conditions. A multiday warming trend and ripening of the snowpack occurred prior to the event as a 500 hPa ridge amplified over western North America leading to record warm 700 hPa temperatures. Anomalous temperatures and cloud cover prevented refreezing of the snowpack and accelerated its ripening with meltwater contributing to soil saturation. Similar conditions occurred during the catastrophic 1983 Slide Mountain debris flow, also hypothesized to be snowmelt initiated. With projected increases in heat waves, our findings can support natural hazard early warning systems in snow-dominated environments

    Serum Biomarkers for Connective Tissue and Basement Membrane Remodeling are Associated with Vertebral Endplate Bone Marrow Lesions as Seen on MRI (Modic Changes)

    Get PDF
    Vertebral endplate bone marrow lesions, visualized on magnetic resonance imaging (MRI) as Modic changes (MC), are associated with chronic low back pain (cLBP). Since guidelines recommend against routine spinal MRI for cLBP in primary care, MC may be underdiagnosed. Serum biomarkers for MC would allow early diagnosis, inform clinical care decisions, and supplement treatment monitoring. We aimed to discover biomarkers in the blood serum that correlate with MC pathophysiological processes. For this single-site cross-sectional study, we recruited 54 subjects with 38 cLBP patients and 16 volunteers without a history of LBP. All subjects completed an Oswestry Disability Index (ODI) questionnaire and 10-cm Visual Analog Score (VAS) for LBP (VASback) and leg pain. Lumbar T1-weighted and fat-saturated T2-weighted MRI were acquired at 3T and used for MC classification in each endplate. Blood serum was collected on the day of MRI. Biomarkers related to disc resorption and bone marrow fibrosis were analyzed with enzyme-linked immune-absorbent assays. The concentration of biomarkers between no MC and any type of MC (AnyMC), MC1, and MC2 were compared. The Area Under the Curve (AUC) of the Receiver Operating Characteristics were calculated for each biomarker and for bivariable biomarker models. We found that biomarkers related to type III and type IV collagen degradation and formation tended to correlate with the presence of MC (p = 0.060-0.088). The bivariable model with the highest AUC was PRO-C3 + C4M and had a moderate diagnostic value for AnyMC in cLBP patients (AUC = 0.73, specificity = 78.9%, sensitivity = 73.7%). In conclusion, serum biomarkers related to the formation and degradation of type III and type IV collagen, which are key molecules in bone marrow fibrosis, correlated with MC presence. Bone marrow fibrosis may be an important pathophysiological process in MC that should be targeted in larger biomarker and treatment studies

    Recreating the California New Year's Flood Event of 1997 in a Regionally Refined Earth System Model

    Get PDF
    Abstract The 1997 New Year's flood event was the most costly in California's history. This compound extreme event was driven by a category 5 atmospheric river that led to widespread snowmelt. Extreme precipitation, snowmelt, and saturated soils produced heavy runoff causing widespread inundation in the Sacramento Valley. This study recreates the 1997 flood using the Regionally Refined Mesh capabilities of the Energy Exascale Earth System Model (RRM‐E3SM) under prescribed ocean conditions. Understanding the processes causing extreme events informs practical efforts to anticipate and prepare for such events in the future, and also provides a rich context to evaluate model skill in representing extremes. Three California‐focused RRM grids, with horizontal resolution refinement of 14 km down to 3.5 km, and six forecast lead times, 28 December 1996 at 00Z through 30 December 1996 at 12Z, are assessed for their ability to recreate the 1997 flood. Planetary to synoptic scale atmospheric circulations and integrated vapor transport are weakly influenced by horizontal resolution refinement over California. Topography and mesoscale circulations, such as the Sierra barrier jet, are better represented at finer horizontal resolutions resulting in better estimates of storm total precipitation and storm duration snowpack changes. Traditional time‐series and causal analysis frameworks are used to examine runoff sensitivities state‐wide and above major reservoirs. These frameworks show that horizontal resolution plays a more prominent role in shaping reservoir inflows, namely the magnitude and time‐series shape, than forecast lead time, 2‐to‐4 days prior to the 1997 flood onset

    Serum biomarkers for connective tissue and basement membrane remodeling are associated with vertebral endplate bone marrow lesions as seen on MRI (Modic changes)

    No full text
    Abstract Vertebral endplate bone marrow lesions, visualized on magnetic resonance imaging (MRI) as Modic changes (MC), are associated with chronic low back pain (cLBP). Since guidelines recommend against routine spinal MRI for cLBP in primary care, MC may be underdiagnosed. Serum biomarkers for MC would allow early diagnosis, inform clinical care decisions, and supplement treatment monitoring. We aimed to discover biomarkers in the blood serum that correlate with MC pathophysiological processes. For this single-site cross-sectional study, we recruited 54 subjects with 38 cLBP patients and 16 volunteers without a history of LBP. All subjects completed an Oswestry Disability Index (ODI) questionnaire and 10-cm Visual Analog Score (VAS) for LBP (VASback) and leg pain. Lumbar T1-weighted and fat-saturated T2-weighted MRI were acquired at 3T and used for MC classification in each endplate. Blood serum was collected on the day of MRI. Biomarkers related to disc resorption and bone marrow fibrosis were analyzed with enzyme-linked immune-absorbent assays. The concentration of biomarkers between no MC and any type of MC (AnyMC), MC1, and MC2 were compared. The Area Under the Curve (AUC) of the Receiver Operating Characteristics were calculated for each biomarker and for bivariable biomarker models. We found that biomarkers related to type III and type IV collagen degradation and formation tended to correlate with the presence of MC (p = 0.060–0.088). The bivariable model with the highest AUC was PRO-C3 + C4M and had a moderate diagnostic value for AnyMC in cLBP patients (AUC = 0.73, specificity = 78.9%, sensitivity = 73.7%). In conclusion, serum biomarkers related to the formation and degradation of type III and type IV collagen, which are key molecules in bone marrow fibrosis, correlated with MC presence. Bone marrow fibrosis may be an important pathophysiological process in MC that should be targeted in larger biomarker and treatment studies
    corecore