239 research outputs found

    Link between K-absorption edges and thermodynamic properties of warm-dense plasmas established by improved first-principles method

    Full text link
    A precise calculation that translates shifts of X-ray K-absorption edges to variations of thermodynamic properties allows quantitative characterization of interior thermodynamic properties of warm dense plasmas by X-ray absorption techniques, which provides essential information for inertial confinement fusion and other astrophysical applications. We show that this interpretation can be achieved through an improved first-principles method. Our calculation shows that the shift of K-edges exhibits selective sensitivity to thermal parameters and thus would be a suitable temperature index to warm dense plasmas. We also show with a simple model that the shift of K-edges can be used to detect inhomogeneity inside warm dense plasmas when combined with other experimental tools

    First-Principles Calculation of Principal Hugoniot and K-Shell X-ray Absorption Spectra for Warm Dense KCl

    Full text link
    Principal Hugoniot and K-shell X-ray absorption spectra of warm dense KCl are calculated using the first-principles molecular dynamics method. Evolution of electronic structures as well as the influence of the approximate description of ionization on pressure (caused by the underestimation of the energy gap between conduction bands and valence bands) in the first-principles method are illustrated by the calculation. Pressure ionization and thermal smearing are shown as the major factors to prevent the deviation of pressure from global accumulation along the Hugoniot. In addition, cancellation between electronic kinetic pressure and virial pressure further reduces the deviation. The calculation of X-ray absorption spectra shows that the band gap of KCl persists after the pressure ionization of the 3p3p electrons of Cl and K taking place at lower energy, which provides a detailed understanding to the evolution of electronic structures of warm dense matter

    Seamlessly Unifying Attributes and Items: Conversational Recommendation for Cold-Start Users

    Full text link
    Static recommendation methods like collaborative filtering suffer from the inherent limitation of performing real-time personalization for cold-start users. Online recommendation, e.g., multi-armed bandit approach, addresses this limitation by interactively exploring user preference online and pursuing the exploration-exploitation (EE) trade-off. However, existing bandit-based methods model recommendation actions homogeneously. Specifically, they only consider the items as the arms, being incapable of handling the item attributes, which naturally provide interpretable information of user's current demands and can effectively filter out undesired items. In this work, we consider the conversational recommendation for cold-start users, where a system can both ask the attributes from and recommend items to a user interactively. This important scenario was studied in a recent work. However, it employs a hand-crafted function to decide when to ask attributes or make recommendations. Such separate modeling of attributes and items makes the effectiveness of the system highly rely on the choice of the hand-crafted function, thus introducing fragility to the system. To address this limitation, we seamlessly unify attributes and items in the same arm space and achieve their EE trade-offs automatically using the framework of Thompson Sampling. Our Conversational Thompson Sampling (ConTS) model holistically solves all questions in conversational recommendation by choosing the arm with the maximal reward to play. Extensive experiments on three benchmark datasets show that ConTS outperforms the state-of-the-art methods Conversational UCB (ConUCB) and Estimation-Action-Reflection model in both metrics of success rate and average number of conversation turns.Comment: TOIS 202

    Chaos: a bridge from microscopic uncertainty to macroscopic randomness

    Full text link
    It is traditionally believed that the macroscopic randomness has nothing to do with the micro-level uncertainty. Besides, the sensitive dependence on initial condition (SDIC) of Lorenz chaos has never been considered together with the so-called continuum-assumption of fluid (on which Lorenz equations are based), from physical and statistic viewpoints. A very fine numerical technique (Liao, 2009) with negligible truncation and round-off errors, called here the "clean numerical simulation" (CNS), is applied to investigate the propagation of the micro-level unavoidable uncertain fluctuation (caused by the continuum-assumption of fluid) of initial conditions for Lorenz equation with chaotic solutions. Our statistic analysis based on CNS computation of 10,000 samples shows that, due to the SDIC, the uncertainty of the micro-level statistic fluctuation of initial conditions transfers into the macroscopic randomness of chaos. This suggests that chaos might be a bridge from micro-level uncertainty to macroscopic randomness, and thus would be an origin of macroscopic randomness. We reveal in this article that, due to the SDIC of chaos and the inherent uncertainty of initial data, accurate long-term prediction of chaotic solution is not only impossible in mathematics but also has no physical meanings. This might provide us a new, different viewpoint to deepen and enrich our understandings about the SDIC of chaos.Comment: 9 pages, 2 figure

    Transonic flutter characteristic of an airfoil with morphing devices

    Get PDF
    An investigation into transonic flutter characteristic of an airfoil conceived with the morphing leading and trailing edges has been carried out. Computational fluid dynamics (CFD) is used to calculate the unsteady aerodynamic force in transonic flow. An aerodynamic reduced order model (ROM) based on autoregressive model with exogenous input (ARX) is used in the numerical simulation. The flutter solution is determined by eigenvalue analysis at specific Mach number. The approach is validated by comparing the transonic flutter characteristics of the Isogai wing with relevant literatures before applied to a morphing airfoil. The study reveals that by employing the morphing trailing edge, the shock wave forms and shifts to the trailing edge at a lower Mach number, and aerodynamic force stabilization happens earlier. Meanwhile, the minimum flutter speed increases and transonic dip occurs at a lower Mach number. It is also noted that leading edge morphing has negligible effect on the appearance of the shock wave and transonic flutter. The mechanism of improving the transonic flutter characteristics by morphing technology is discussed by correlating shock wave location on airfoil surface, unsteady aerodynamics with flutter solutio

    Gust response and body freedom flutter of a flying-wing aircraft with a passive gust alleviation device

    Get PDF
    The effectiveness of a passive gust alleviation device (PGAD) mounted at the wingtip of aircraft in conventional and flying-wing configurations have been studied in previous research. However the PGAD influence on the aeroelastic stability in particular the body freedom flutter (BFF) of a flying-wing aircraft remains as a concern. This present investigation is focused on evaluating the beneficial effect of PGAD on both gust load alleviation and BFF of a small flying-wing aircraft of high aspect ratio wing made of composite. A small range of (1-cos) type of gust load has been considered to select a representative critical gust load case for the study. A parametric study indicates that there is a narrow band of optimal key parameters for the PGAD design. Subsequently a set of optimal parameters is selected to further the analysis of the PGAD mechanism. The case study results show that the PGAD can make the bending moment at the wing root due to gust reduced by 16%. In addition, the BFF speed of the flying-wing aircraft is increased by 4.2%. The investigation reveals that the PGAD mode and its interaction with the wing bending mode and short period oscillation of the aircraft can have beneficial aeroelastic effect on both gust alleviation and flutter suppression

    Passive gust alleviation of a flying-wing aircraft by analysis and wind-tunnel test of a scaled model in dynamic similarity

    Get PDF
    An investigation was conducted to evaluate the effectiveness of a passive gust alleviation device (PGAD) installed in a flying-wing aircraft of 62.3m wing span at large swept back angle. It was performed by numerical analysis and validated by wind-tunnel test of a 1:25 reduced scale physical model of dynamic similarity to the full-scale aircraft. The 1-cosine gust model with a range of gust parameters specified in the airworthiness regulation CS-23 was taken in the gust response analysis that led to 7~9% gust alleviation results by employing the PGAD. The gust response dominated by the first three modes of the aircraft was most critical in the frequency close to the first bending mode of the wing. The wind-tunnel test model was designed and manufactured based on dynamic scaling law, and proved to be of excellent dynamic similarity by the deviation of less than 5.5% between the first three modes of the physical model measured by vibration test and the full-scale aircraft model. The wind tunnel test results show that the gust response of the model in the specified range was reduced by 8.3~14.3% according to the measured wing tip deflection associated with the PGAD oscillation amplitude at 4.0°~15.5°. The present study shows that the numerical analysis of gust response and alleviation of a full-scale aircraft installed with PGAD can be validated by wind tunnel test of a scaled physical model with dynamic similarity

    Comparison between Numerical and Analytical Analysis of the Dynamic Behavior of Circular Tunnels

    Get PDF
    Dynamic behavior of underground structures is controlled by the strain field imposed by wave propagation and by the interaction between rock mass and structures. Shear and pressure waves propagating in the plane of the cross-section of the tunnel generate ground distortions, which tend to cause ovaling deformations of the lining. In this paper, the seismic response of a circular tunnel subjected respectively to shear waves and pressure waves will be analyzed both analytically and numerically at first, and then a complete 3D analysis will be given to show the overall effects on a tunnel induced by seismic events considering seismic inputs in three directions.El comportamiento dinámico de estructuras subterráneas se controla por el campo de deformación impuesta por la propagación de ondas y por la interacción entre la masa rocosa y las estructuras. La onda de cizallamiento y la onda de presión en el plano de sección transversal del túnel generan distorsiones del terreno que tienden a causar deformaciones ovaladas del revestimiento de la estructura. En este artículo se analiza la respuesta sísmica de un túnel circular sujeto respectivamente a ondas de cizallamiento y ondas de presión tanto analítica como numéricamente. Luego se muestra un análisis tridimensional completo para mostrar los efectos generales en un túnel producidos por eventos sísmicos y donde se consideran registros en tres direcciones

    CIRS: Bursting Filter Bubbles by Counterfactual Interactive Recommender System

    Full text link
    While personalization increases the utility of recommender systems, it also brings the issue of filter bubbles. E.g., if the system keeps exposing and recommending the items that the user is interested in, it may also make the user feel bored and less satisfied. Existing work studies filter bubbles in static recommendation, where the effect of overexposure is hard to capture. In contrast, we believe it is more meaningful to study the issue in interactive recommendation and optimize long-term user satisfaction. Nevertheless, it is unrealistic to train the model online due to the high cost. As such, we have to leverage offline training data and disentangle the causal effect on user satisfaction. To achieve this goal, we propose a counterfactual interactive recommender system (CIRS) that augments offline reinforcement learning (offline RL) with causal inference. The basic idea is to first learn a causal user model on historical data to capture the overexposure effect of items on user satisfaction. It then uses the learned causal user model to help the planning of the RL policy. To conduct evaluation offline, we innovatively create an authentic RL environment (KuaiEnv) based on a real-world fully observed user rating dataset. The experiments show the effectiveness of CIRS in bursting filter bubbles and achieving long-term success in interactive recommendation. The implementation of CIRS is available via https://github.com/chongminggao/CIRS-codes.Comment: 11 pages, 9 figure
    • …
    corecore