1,425 research outputs found
Tunneling spectra of submicron BiSrCaCuO intrinsic Josephson junctions: evolution from superconducting gap to pseudogap
Tunneling spectra of near optimally doped, submicron
BiSrCaCuO intrinsic Josephson junctions are presented,
and examined in the region where the superconducting gap evolves into
pseudogap. The spectra are analyzed using a self-energy model, proposed by
Norman {\it et al.}, in which both quasiparticle scattering rate and
pair decay rate are considered. The density of states derived
from the model has the familiar Dynes' form with a simple replacement of
by = ( + )/2. The
parameter obtained from fitting the experimental spectra shows a roughly linear
temperature dependence, which puts a strong constraint on the relation between
and . We discuss and compare the Fermi arc behavior
in the pseudogap phase from the tunneling and angle-resolved photoemission
spectroscopy experiments. Our results indicate an excellent agreement between
the two experiments, which is in favor of the precursor pairing view of the
pseudogap.Comment: 7 pages, 6 figure
Persistent edge currents for paired quantum hall states
We study the behavior of the persistent edge current for paired quantum Hall
states on the cylinder. We show that the currents are periodic with the unit
flux . At low temperatures, they exhibit anomalous oscillations in
their flux dependence.The shape of the functions converges to the sawtooth
function periodic with .Comment: RevTex 8 pages. one figure. to appear in Phys.Rev.
On Dimer Models and Closed String Theories
We study some aspects of the recently discovered connection between dimer
models and D-brane gauge theories. We argue that dimer models are also
naturally related to closed string theories on non compact orbifolds of \BC^2
and \BC^3, via their twisted sector R charges, and show that perfect
matchings in dimer models correspond to twisted sector states in the closed
string theory. We also use this formalism to study the combinatorics of some
unstable orbifolds of \BC^2.Comment: 1 + 25 pages, LaTeX, 11 epsf figure
Mechanical response of self-ion irradiated, single crystal, FCC micropillars
Increasing energy demands and regulations on cleaner and more efficient energy sources has reinvigorated research into next generation nuclear reactors. The safe and optimal operation of the various proposed reactors requires the cladding and structural metals to perform under a combination of extreme environments including radiation damage levels \u3e100 dpa. This presentation will highlight a rapid screening technique developed at Sandia National Laboratories to determine the relative merit of implementing various advanced structural alloys and composites in high radiation environments. In addition to an overview of the technique and the wealth of alloy systems it has been applied to, this presentation will focus on the detailed mechanisms that can be elucidated from the micropillar compression of ion irradiated single crystal copper and nickel. Single crystal Cu micropillars self-ion irradiated up to 190 dpa at the end of range were compressed along the \u3c110\u3e to 10% strain. To elucidate the interaction of different length scales on the mechanical response, three specimen configurations were explored: large 10 ÎŒm tall, intermediate 5 ÎŒm tall, and small 4 ÎŒm tall pillars. In a similar manner, pristine and self-ion irradiated \u3c111\u3e Ni pillars were subject to in-situ microcompression in a scanning electron microscope (SEM). By performing these experiments during real time SEM observation a direct correlation between the mechanical responses and the pillarsâ structural evolution can be obtained. Specifically, the dynamics resulting from the defect free channel formation and subsequent localization can be associated with heterogeneous plastic flow. This presentation will highlight the multiple length scale effects that are active during the micropillar compression of self-ion irradiated, single crystal, FCC micropillars. These results will be discussed in the context of an end of range effect, a damage gradient effect, and size effects, as well as compared to other small scale mechanical testing methods of ion and neutron irradiated materials. Finally, the benefits and limitations of applying these methods to rapidly screen advanced materials for potential future nuclear reactor applications will be discussed. This study is supported by the Division of Materials Science and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energyâs National Nuclear Security Administration under contract DE-AC04-94AL85000
Craterostigma plantagineum cell wall composition is remodelled during desiccation and the glycineârich protein CpGRP1 interacts with pectins through clustered arginines
Craterostigma plantagineum belongs to the desiccationâtolerant angiosperm plants. Upon dehydration, leaves fold and the cells shrink which is reversed during rehydration. To understand this process changes in cell wall pectin composition, and the role of the apoplastic glycineârich protein 1 (CpGRP1) were analysed. Cellular microstructural changes in hydrated, desiccated and rehydrated leaf sections were analysed using scanning electron microscopy. Pectin composition in different cell wall fractions was analysed with monoclonal antibodies against homogalacturonan, rhamnogalacturonan I, rhamnogalacturonan II and hemicellulose epitopes. Our data demonstrate changes in pectin composition during dehydration/rehydration which is suggested to affect cell wall properties. Homogalacturonan was less methylesterified upon desiccation and changes were also demonstrated in the detection of rhamnogalacturonan I, rhamnogalacturonan II and hemicelluloses. CpGRP1 seems to have a central role in cell adaptations to water deficit, as it interacts with pectin through a cluster of arginine residues and deâmethylesterified pectin presents more binding sites for the proteinâpectin interaction than to pectin from hydrated leaves. CpGRP1 can also bind phosphatidic acid (PA) and cardiolipin. The binding of CpGRP1 to pectin appears to be dependent on the pectin methylesterification status and it has a higher affinity to pectin than its binding partner CpWAK1. It is hypothesised that changes in pectin composition are sensed by the CpGRP1âCpWAK1 complex therefore leading to the activation of dehydrationârelated responses and leaf folding. PA might participate in the modulation of CpGRP1 activity
G(2) quivers
We present, in explicit matrix representation and a modernity befitting the community, the classification of the finite discrete subgroups of G2 and compute the McKay quivers arising therefrom. Of physical interest are the classes of Script N = 1 gauge theories descending from M-theory and of mathematical interest are possible steps toward a systematic study of crepant resolutions to smooth G2 manifolds as well as generalised McKay Correspondences. This writing is a companion monograph to hep-th/9811183 and hep-th/9905212, wherein the analogues for Calabi-Yau three- and four-folds were considered
Zeeman Spectroscopy of the Star Algebra
We solve the problem of finding all eigenvalues and eigenvectors of the
Neumann matrix of the matter sector of open bosonic string field theory,
including the zero modes, and switching on a background B-field. We give the
discrete eigenvalues as roots of transcendental equations, and we give
analytical expressions for all the eigenvectors.Comment: (1, 25) pages, 2 Figure
Duality cascades and duality walls
We recast the phenomenon of duality cascades in terms of the Cartan matrix
associated to the quiver gauge theories appearing in the cascade. In this
language, Seiberg dualities for the different gauge factors correspond to Weyl
reflections. We argue that the UV behavior of different duality cascades
depends markedly on whether the Cartan matrix is affine ADE or not. In
particular, we find examples of duality cascades that can't be continued after
a finite energy scale, reaching a "duality wall", in terminology due to M.
Strassler. For these duality cascades, we suggest the existence of a UV
completion in terms of a little string theory.Comment: harvmac, 24 pages, 4 figures. v2: references added. v3: reference
adde
The spectrum of BPS branes on a noncompact Calabi-Yau
We begin the study of the spectrum of BPS branes and its variation on lines
of marginal stability on O_P^2(-3), a Calabi-Yau ALE space asymptotic to
C^3/Z_3. We show how to get the complete spectrum near the large volume limit
and near the orbifold point, and find a striking similarity between the
descriptions of holomorphic bundles and BPS branes in these two limits. We use
these results to develop a general picture of the spectrum. We also suggest a
generalization of some of the ideas to the quintic Calabi-Yau.Comment: harvmac, 45 pp. (v2: added references
Using Pair Programming as a Collaborative Learning Approach to Support Students With Learning Disabilities Via Zoom Breakout Rooms
Peer learning through pair programming is a type of collaborative learning that involves students working in pairs to discuss computer programming concepts or develop codes to solve problems. The Zoom breakout room method is applied to teach pair programming in a virtual classroom during the COVID-19 environment. By facilitating pair programming in a virtual learning environment, we gained valuable experience in promoting collaborative learning, active learning, and problem-based learning activities in a cloud setting
- âŠ