8,594 research outputs found
On magnetic reconnection and flux rope topology in solar flux emergence
We present an analysis of the formation of atmospheric flux ropes in a magnetohydrodynamic solar flux emergence simulation. The simulation domain ranges from the top of the solar interior to the low corona. A twisted magnetic flux tube emerges from the solar interior and into the atmosphere where it interacts with the ambient magnetic field. By studying the connectivity of the evolving magnetic field, we are able to better understand the process of flux rope formation in the solar atmosphere. In the simulation, two flux ropes are produced as a result of flux emergence. Each has a different evolution resulting in different topological structures. These are determined by plasma flows and magnetic reconnection. As the flux rope is the basic structure of the coronal mass ejection, we discuss the implications of our findings for solar eruptions
Some Aspects of the Biology of a Predaceous Anthomyiid Fly, \u3ci\u3eCoenosia Tigrina\u3c/i\u3e
The results of a two-year study in Michigan on the incidence of Coenosia tigrina adults under different onion production practices is presented. In Michigan, C. tigrina has three generations and is more abundant in organic agroecosystems than chemically-intensive onion production systems
Galaxy Peculiar Velocities and Infall onto Groups
We perform statistical analyses to study the infall of galaxies onto groups
and clusters in the nearby Universe. The study is based on the UZC and SSRS2
group catalogs and peculiar velocity samples. We find a clear signature of
infall of galaxies onto groups over a wide range of scales 5 h^{-1} Mpc<r<30
h^{-1} Mpc, with an infall amplitude on the order of a few hundred kilometers
per second. We obtain a significant increase in the infall amplitude with group
virial mass (M_{V}) and luminosity of group member galaxies (L_{g}). Groups
with M_{V}<10^{13} M_{\odot} show infall velocities V_{infall} \simeq 150 km
s^{-1} whereas for M_{V}>10^{13} M_{\odot} a larger infall is observed,
V_{infall} \simeq 200 km s^{-1}. Similarly, we find that galaxies surrounding
groups with L_{g}<10^{15} L_{\odot} have V_{infall} \simeq 100 km s^{-1},
whereas for L_{g}>10^{15} L_{\odot} groups, the amplitude of the galaxy infall
can be as large as V_{infall} \simeq 250 km s^{-1}. The observational results
are compared with the results obtained from mock group and galaxy samples
constructed from numerical simulations, which include galaxy formation through
semianalytical models. We obtain a general agreement between the results from
the mock catalogs and the observations. The infall of galaxies onto groups is
suitably reproduced in the simulations and, as in the observations, larger
virial mass and luminosity groups exhibit the largest galaxy infall amplitudes.
We derive estimates of the integrated mass overdensities associated with groups
by applying linear theory to the infall velocities after correcting for the
effects of distance uncertainties obtained using the mock catalogs. The
resulting overdensities are consistent with a power law with \delta \sim 1 at r
\sim 10 h^{-1}Mpc.Comment: 25 pages, 10 figure
Electrostatic considerations affecting the calculated HOMO-LUMO gap in protein molecules.
A detailed study of energy differences between the highest occupied and
lowest unoccupied molecular orbitals (HOMO-LUMO gaps) in protein systems and
water clusters is presented. Recent work questioning the applicability of
Kohn-Sham density-functional theory to proteins and large water clusters (E.
Rudberg, J. Phys.: Condens. Mat. 2012, 24, 072202) has demonstrated vanishing
HOMO-LUMO gaps for these systems, which is generally attributed to the
treatment of exchange in the functional used. The present work shows that the
vanishing gap is, in fact, an electrostatic artefact of the method used to
prepare the system. Practical solutions for ensuring the gap is maintained when
the system size is increased are demonstrated. This work has important
implications for the use of large-scale density-functional theory in
biomolecular systems, particularly in the simulation of photoemission, optical
absorption and electronic transport, all of which depend critically on
differences between energies of molecular orbitals.Comment: 13 pages, 4 figure
NGC 4254: An Act of Harassment Uncovered by the Arecibo Legacy Fast ALFA Survey
We present an HI map constructed from the Arecibo Legacy Fast ALFA (ALFALFA)
survey of the surroundings of the strongly asymmetric Virgo cluster Sc galaxy
NGC 4254. Noted previously for its lopsided appearance, rich interstellar
medium, and extradisk HI emission, NGC 4254 is believed to be entering the
Virgo environment for the first time and at high speed. The ALFALFA map clearly
shows a long HI tail extending ~250 kpc northward from the galaxy. Embedded as
one condensation within this HI structure is the object previously identified
as a "dark galaxy": Virgo HI21 (Davies et al. 2004). A body of evidence
including its location within and velocity with respect to the cluster and the
appearance and kinematics of its strong spiral pattern, extra-disk HI and
lengthy HI tail is consistent with a picture of "galaxy harassment" as proposed
by Moore et al. (1996a,b; 1998). The smoothly varying radial velocity field
along the tail as it emerges from NGC 4254 can be used as a timing tool, if
interpreted as resulting from the coupling of the rotation of the disk and the
collective gravitational forces associated with the harassment mechanism.Comment: accepted for publication in Ap.J.(Lett.). higher resolution figure
available at http://egg.astro.cornell.edu/alfalfa/pubs/figs/n4254_f1.ep
- …