14,687 research outputs found

    Towards musical interaction : 'Schismatics' for e-violin and computer.

    Get PDF
    This paper discusses the evolution of the Max/MSP patch used in schismatics (2007, rev. 2010) for electric violin (Violectra) and computer, by composer Sam Hayden in collaboration with violinist Mieko Kanno. schismatics involves a standard performance paradigm of a fixed notated part for the e-violin with sonically unfixed live computer processing. Hayden was unsatisfied with the early version of the piece: the use of attack detection on the live e-violin playing to trigger stochastic processes led to an essentially reactive behaviour in the computer, resulting in a somewhat predictable one-toone sonic relationship between them. It demonstrated little internal relationship between the two beyond an initial e-violin ‘action’ causing a computer ‘event’. The revisions in 2010, enabled by an AHRC Practice-Led research award, aimed to achieve 1) a more interactive performance situation and 2) a subtler and more ‘musical’ relationship between live and processed sounds. This was realised through the introduction of sound analysis objects, in particular machine listening and learning techniques developed by Nick Collins. One aspect of the programming was the mapping of analysis data to synthesis parameters, enabling the computer transformations of the e-violin to be directly related to Kanno’s interpretation of the piece in performance

    Spectral Analysis Program (SAP)

    Get PDF
    Program eliminates or reduces time-consuming aspects of computation of power spectrum for high-frequency communication system. This program was written in FORTRAN IV for UNIVAC 1230 or 1108 computer

    Two-message quantum interactive proofs and the quantum separability problem

    Full text link
    Suppose that a polynomial-time mixed-state quantum circuit, described as a sequence of local unitary interactions followed by a partial trace, generates a quantum state shared between two parties. One might then wonder, does this quantum circuit produce a state that is separable or entangled? Here, we give evidence that it is computationally hard to decide the answer to this question, even if one has access to the power of quantum computation. We begin by exhibiting a two-message quantum interactive proof system that can decide the answer to a promise version of the question. We then prove that the promise problem is hard for the class of promise problems with "quantum statistical zero knowledge" (QSZK) proof systems by demonstrating a polynomial-time Karp reduction from the QSZK-complete promise problem "quantum state distinguishability" to our quantum separability problem. By exploiting Knill's efficient encoding of a matrix description of a state into a description of a circuit to generate the state, we can show that our promise problem is NP-hard with respect to Cook reductions. Thus, the quantum separability problem (as phrased above) constitutes the first nontrivial promise problem decidable by a two-message quantum interactive proof system while being hard for both NP and QSZK. We also consider a variant of the problem, in which a given polynomial-time mixed-state quantum circuit accepts a quantum state as input, and the question is to decide if there is an input to this circuit which makes its output separable across some bipartite cut. We prove that this problem is a complete promise problem for the class QIP of problems decidable by quantum interactive proof systems. Finally, we show that a two-message quantum interactive proof system can also decide a multipartite generalization of the quantum separability problem.Comment: 34 pages, 6 figures; v2: technical improvements and new result for the multipartite quantum separability problem; v3: minor changes to address referee comments, accepted for presentation at the 2013 IEEE Conference on Computational Complexity; v4: changed problem names; v5: updated references and added a paragraph to the conclusion to connect with prior work on separability testin

    A Signal Distribution Network for Sequential Quantum-dot Cellular Automata Systems

    Get PDF
    The authors describe a signal distribution network for sequential systems constructed using the Quantum-dot Cellular Automata (QCA) computing paradigm. This network promises to enable the construction of arbitrarily complex QCA sequential systems in which all wire crossings are performed using nearest neighbor interactions, which will improve the thermal behavior of QCA systems as well as their resistance to stray charge and fabrication imperfections. The new sequential signal distribution network is demonstrated by the complete design and simulation of a two-bit counter, a three-bit counter, and a pattern detection circuit

    Quantum trade-off coding for bosonic communication

    Get PDF
    The trade-off capacity region of a quantum channel characterizes the optimal net rates at which a sender can communicate classical, quantum, and entangled bits to a receiver by exploiting many independent uses of the channel, along with the help of the same resources. Similarly, one can consider a trade-off capacity region when the noiseless resources are public, private, and secret key bits. In [Phys. Rev. Lett. 108, 140501 (2012)], we identified these trade-off rate regions for the pure-loss bosonic channel and proved that they are optimal provided that a longstanding minimum output entropy conjecture is true. Additionally, we showed that the performance gains of a trade-off coding strategy when compared to a time-sharing strategy can be quite significant. In the present paper, we provide detailed derivations of the results announced there, and we extend the application of these ideas to thermalizing and amplifying bosonic channels. We also derive a "rule of thumb" for trade-off coding, which determines how to allocate photons in a coding strategy if a large mean photon number is available at the channel input. Our results on the amplifying bosonic channel also apply to the "Unruh channel" considered in the context of relativistic quantum information theory.Comment: 20 pages, 7 figures, v2 has a new figure and a proof that the regions are optimal for the lossy bosonic channel if the entropy photon-number inequality is true; v3, submission to Physical Review A (see related work at http://link.aps.org/doi/10.1103/PhysRevLett.108.140501); v4, final version accepted into Physical Review

    Leggett-Garg inequalities and the geometry of the cut polytope

    Get PDF
    The Bell and Leggett-Garg tests offer operational ways to demonstrate that non-classical behavior manifests itself in quantum systems, and experimentalists have implemented these protocols to show that classical worldviews such as local realism and macrorealism are false, respectively. Previous theoretical research has exposed important connections between more general Bell inequalities and polyhedral combinatorics. We show here that general Leggett-Garg inequalities are closely related to the cut polytope of the complete graph, a geometric object well-studied in combinatorics. Building on that connection, we offer a family of Leggett-Garg inequalities that are not trivial combinations of the most basic Leggett-Garg inequalities. We then show that violations of macrorealism can occur in surprising ways, by giving an example of a quantum system that violates the new "pentagon" Leggett-Garg inequality but does not violate any of the basic "triangle" Leggett-Garg inequalities.Comment: 5 pages, 1 figur
    • …
    corecore