21 research outputs found

    Observation of domain wall bimerons in chiral magnets

    Full text link
    Topological defects embedded in or combined with domain walls have been proposed in various systems, some of which are referred to as domain wall skyrmions or domain wall bimerons. However, the experimental observation of such topological defects remains an ongoing challenge. Here, using Lorentz transmission electron microscopy, we report the experimental discovery of domain wall bimerons in chiral magnet Co-Zn-Mn(110) thin films. By applying a magnetic field, multidomain structures develop, and simultaneously, chained and isolated bimerons arise as the localized state between the domains with the opposite in-plane components of net magnetization. The multidomain formation is attributed to magnetic anisotropy and dipolar interaction, and domain wall bimerons are stabilized by the Dzyaloshinskii-Moriya interaction. In addition, micromagnetic simulations show that domain wall bimerons appear for a wide range of conditions in chiral magnets with cubic magnetic anisotropy. Our results promote further study in various fields of physics.Comment: 30 pages, 10 figures (including Supplementary Materials

    Psychiatric-disorder-related behavioral phenotypes and cortical hyperactivity in a mouse model of 3q29 deletion syndrome

    Get PDF
    3q29 microdeletion, a rare recurrent copy number variant (CNV), greatly confers an increased risk of psychiatric disorders, such as schizophrenia and autism spectrum disorder (ASD), as well as intellectual disability. However, disease-relevant cellular phenotypes of 3q29 deletion syndrome remain to be identified. To reveal the molecular and cellular etiology of 3q29 deletion syndrome, we generated a mouse model of human 3q29 deletion syndrome by chromosome engineering, which achieved construct validity. 3q29 deletion (Df/+) mice showed reduced body weight and brain volume and, more importantly, impaired social interaction and prepulse inhibition. Importantly, the schizophrenia-related impaired prepulse inhibition was reversed by administration of antipsychotics. These findings are reminiscent of the growth defects and neuropsychiatric behavioral phenotypes in patients with 3q29 deletion syndrome and exemplify that the mouse model achieves some part of face validity and predictive validity. Unbiased whole-brain imaging revealed that neuronal hyperactivation after a behavioral task was strikingly exaggerated in a restricted region of the cortex of Df/+ mice. We further elucidated the cellular phenotypes of neuronal hyperactivation and the reduction of parvalbumin expression in the cortex of Df/+ mice. Thus, the 3q29 mouse model provides invaluable insight into the disease-causative molecular and cellular pathology of psychiatric disorders

    精神疾患におけるVPAC2受容体の病態生理学的役割

    No full text

    Impaired extinction of cued fear memory and abnormal dendritic morphology in the prelimbic and infralimbic cortices in VPAC2 receptor (VIPR2)-deficient mice.

    No full text
    The structurally related neuropeptides vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) have been implicated in stress regulation and learning and memory. Several bodies of research have shown the impact of the PACAP specific receptor PAC1 on fear memory, but the roles of other PACAP receptors in regulating fear stress responses remain to be elucidated. Here we aimed to investigate the effects of genetic deletion of VIPR2 encoding the VPAC2 receptor, which binds both VIP and PACAP, on fear-related memory and on dendritic morphology in the brain regions of the fear circuitry. Male VPAC2 receptor knockout (VPAC2-KO) and littermate wild-type control mice were subjected to Pavlovian fear conditioning paradigm. VPAC2-KO mice displayed normal acquisition of fear conditioning, contextual and cued fear memory, but impaired extinction of cued fear memory. Morphological analyses revealed reductions in cell body size and total branch number and length of apical and basal dendrites of prelimbic cortex neurons in VPAC2-KO mice. In addition, Sholl analysis indicated that the amount of dendritic material distal to the soma was decreased, while proximal dendritic material was increased. In the infralimbic cortex, the amount of apical dendritic material proximal to the soma was increased in VPAC2-KO mice, while other indices of morphology did not differ. Finally, there were no differences in dendritic morphology in basolateral amygdala neurons between genotypes. These findings suggest that the VPAC2 receptor plays an important role in the fear extinction processes and the regulation of the dendritic morphology in the prelimbic and infralimbic cortices

    Generation of MBP-tdTomato reporter human induced pluripotent stem cell line for live myelin visualization

    No full text
    Myelin basic protein (MBP) is a major component of the myelin sheaths of oligodendrocytes in the central nervous system and Schwann cells of the peripheral nervous system. Here we generated heterozygous fluorescent reporter of MBP gene in human induced pluripotent stem cells (hiPSCs). CRISPR/Cas9 genome editing technology was employed to knock in fused tdTomato fluorescent protein and EF1 alpha promoter-driven Bleomycin (Zeocin) resistance gene to the translational MBP C-terminal region. The resulting line, MBP-TEZ, showed tdTomato fluorescence upon oligodendrocyte differentiation. This reporter hiPSC line provides a precedential opportunity for monitoring human myelin formation and degeneration and purifying MBP-expressing cell lineages

    β-Arrestin1 and 2 differentially regulate PACAP-induced PAC1 receptor signaling and trafficking

    No full text
    <div><p>A pituitary adenylate cyclase-activating polypeptide (PACAP)-specific receptor, PAC1R, is coupled with multiple signal transduction pathways including stimulation of adenylate cyclase, phospholipase C and extracellular-signal regulated kinase (ERK)1/2. PAC1R has been shown to exert its long-lasting and potent signals via β-arrestin1 and β-arrestin2. However, the precise roles of the two β-arrestin isoforms in PACAP-PAC1R signaling remain unclear. Here we examined the interaction between the two β-arrestin isoforms and PAC1R, β-arrestin-dependent PAC1R subcellular localization and ERK1/2 activation. Upon PACAP stimulation, although PAC1R similarly interacted with β-arrestin1 and β-arrestin2 in HEK293T cells, the complex of PAC1R and β-arrestin2 was translocated from the cell surface into cytosol, but that of β-arrestin1 remained in the cell surface regions in HeLa cells and mouse primary cultured neurons. Silencing of β-arrestin2 blocked PACAP-induced PAC1R internalization and ERK1/2 phosphorylation, but silencing of β-arrestin1 increased ERK1/2 phosphorylation. These results show that β-arrestin1 and β-arrestin2 exert differential actions on PAC1R internalization and PAC1R-dependent ERK1/2 activation, and suggest that the two β-arrestin isoforms may be involved in fine and precise tuning of the PAC1R signaling pathways.</p></div

    Time-lapse cell imaging showing PAC1R and β-arrestin coupling and translocation in HeLa cells.

    No full text
    <p>HeLa cells were transfected with the indicated combinations of plasmid vectors. <b>(A and B)</b> Representative images of NanoBiT luminescence at 3, 15, 30 and 60 min after stimulation with 1 μM PACAP. <b>(C and D)</b> Representative time-dependent changes of line-scan images for 60 min after stimulation with 1 μM PACAP. <b>(E and F)</b> Time course of changes in luminescence intensity at the vicinity of the plasma membrane (membrane) and the cytoplasm for 60 min after stimulation with 1 μM PACAP in HeLa cells. Scale bars, 10 μm. β-arr1, β-arrestin1; β-arr2, β-arrestin2. Values are mean ± SEM (n = 3–5). *<i>p</i> < 0.05 vs. cytoplasm, repeated measure two-way ANOVA followed by Fisher-PLSD test. See also <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0196946#pone.0196946.s004" target="_blank">S1</a> and <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0196946#pone.0196946.s005" target="_blank">S2</a> Movies.</p
    corecore