77 research outputs found
Influence of anisotropic conductivity of the white matter tissue on EEG source reconstruction a FEM simulation study
The aim of this study was to quantify the influence of the inclusion of anisotropic conductivity on EEG source reconstruction. We applied high-resolution finite element modeling and performed forward and inverse simulation with over 4000 single dipoles placed around an anisotropic volume block (with an anisotropic ratio of 1:10) in a rabbit brain. We investigated three different orientation of the dipoles with respect to the anisotropy in the white matter block. We found a weak influence of the anisotropy in the forward simulation on the electric potential. The relative difference measure (RDM) between the potentials simulated with and without taking into account anisotropy was less than 0.009. The changes in magnitude (MAG) ranged from 0.944 to 1.036. Using the potentials of the forward simulation derived with the anisotropic model and performing source reconstruction by employing the isotropic model led to dipole shifts of up to 2 mm, however the mean shift over all dipoles and orientations of 0.05 mm was smaller than the grid size of the FEM model (0.6 mm). However, we found the source strength estimation to be more influenced by the anisotropy (up to 7-times magnified dipole strength)
Effect of Nuclear Quadrupole Interaction on the Relaxation in Amorphous Solids
Recently it has been experimentally demonstrated that certain glasses display
an unexpected magnetic field dependence of the dielectric constant. In
particular, the echo technique experiments have shown that the echo amplitude
depends on the magnetic field. The analysis of these experiments results in the
conclusion that the effect seems to be related to the nuclear degrees of
freedom of tunneling systems. The interactions of a nuclear quadrupole
electrical moment with the crystal field and of a nuclear magnetic moment with
magnetic field transform the two-level tunneling systems inherent in amorphous
dielectrics into many-level tunneling systems. The fact that these features
show up at temperatures , where the properties of amorphous materials
are governed by the long-range interaction between tunneling systems,
suggests that this interaction is responsible for the magnetic field dependent
relaxation. We have developed a theory of many-body relaxation in an ensemble
of interacting many-level tunneling systems and show that the relaxation rate
is controlled by the magnetic field. The results obtained correlate with the
available experimental data. Our approach strongly supports the idea that the
nuclear quadrupole interaction is just the key for understanding the unusual
behavior of glasses in a magnetic field.Comment: 18 pages, 9 figure
Sensitivity of MEG and EEG to Source Orientation
An important difference between magnetoencephalography
(MEG) and electroencephalography (EEG)
is that MEG is insensitive to radially oriented sources. We
quantified computationally the dependency of MEG and
EEG on the source orientation using a forward model with
realistic tissue boundaries. Similar to the simpler case of a
spherical head model, in which MEG cannot see radial
sources at all, for most cortical locations there was a source
orientation to which MEG was insensitive. The median
value for the ratio of the signal magnitude for the source
orientation of the lowest and the highest sensitivity was
0.06 for MEG and 0.63 for EEG. The difference in the
sensitivity to the source orientation is expected to contribute
to systematic differences in the signal-to-noise ratio
between MEG and EEG.National Institutes of Health (U.S.) (Grant NS057500)National Institutes of Health (U.S.) (Grant NS037462)National Institutes of Health (U.S.) (Grant HD040712)National Center for Research Resources (U.S.) (P41RR14075)Mind Research Networ
Variable Anisotropic Brain Electrical Conductivities in Epileptogenic Foci
Source localization models assume brain electrical conductivities are isotropic at about 0.33 S/m. These assumptions have not been confirmed ex vivo in humans. This study determined bidirectional electrical conductivities from pediatric epilepsy surgery patients. Electrical conductivities perpendicular and parallel to the pial surface of neocortex and subcortical white matter (n = 15) were measured using the 4-electrode technique and compared with clinical variables. Mean (±SD) electrical conductivities were 0.10 ± 0.01 S/m, and varied by 243% from patient to patient. Perpendicular and parallel conductivities differed by 45%, and the larger values were perpendicular to the pial surface in 47% and parallel in 40% of patients. A perpendicular principal axis was associated with normal, while isotropy and parallel principal axes were linked with epileptogenic lesions by MRI. Electrical conductivities were decreased in patients with cortical dysplasia compared with non-dysplasia etiologies. The electrical conductivity values of freshly excised human brain tissues were approximately 30% of assumed values, varied by over 200% from patient to patient, and had erratic anisotropic and isotropic shapes if the MRI showed a lesion. Understanding brain electrical conductivity and ways to non-invasively measure them are probably necessary to enhance the ability to localize EEG sources from epilepsy surgery patients
When Your Decisions Are Not (Quite) Your Own: Action Observation Influences Free Choices
A growing number of studies have begun to assess how the actions of one individual are represented in an observer. Using a variant of an action observation paradigm, four experiments examined whether one person's behaviour can influence the subjective decisions and judgements of another. In Experiment 1, two observers sat adjacent to each other and took turns to freely select and reach to one of two locations. Results showed that participants were less likely to make a response to the same location as their partner. In three further experiments observers were asked to decide which of two familiar products they preferred or which of two faces were most attractive. Results showed that participants were less likely to choose the product or face occupying the location of their partner's previous reaching response. These findings suggest that action observation can influence a range of free choice preferences and decisions. Possible mechanisms through which this influence occurs are discussed
Modeling Brain Resonance Phenomena Using a Neural Mass Model
Stimulation with rhythmic light flicker (photic driving) plays an important role in the diagnosis of schizophrenia, mood disorder, migraine, and epilepsy. In particular, the adjustment of spontaneous brain rhythms to the stimulus frequency (entrainment) is used to assess the functional flexibility of the brain. We aim to gain deeper understanding of the mechanisms underlying this technique and to predict the effects of stimulus frequency and intensity. For this purpose, a modified Jansen and Rit neural mass model (NMM) of a cortical circuit is used. This mean field model has been designed to strike a balance between mathematical simplicity and biological plausibility. We reproduced the entrainment phenomenon observed in EEG during a photic driving experiment. More generally, we demonstrate that such a single area model can already yield very complex dynamics, including chaos, for biologically plausible parameter ranges. We chart the entire parameter space by means of characteristic Lyapunov spectra and Kaplan-Yorke dimension as well as time series and power spectra. Rhythmic and chaotic brain states were found virtually next to each other, such that small parameter changes can give rise to switching from one to another. Strikingly, this characteristic pattern of unpredictability generated by the model was matched to the experimental data with reasonable accuracy. These findings confirm that the NMM is a useful model of brain dynamics during photic driving. In this context, it can be used to study the mechanisms of, for example, perception and epileptic seizure generation. In particular, it enabled us to make predictions regarding the stimulus amplitude in further experiments for improving the entrainment effect
- …