698 research outputs found

    Clustering and Precipitation during Early-Stage Artificial Aging of Al–Si–Mg(–Cu) Foundry Alloys

    Get PDF
    High-Si aluminum foundry alloys are an important material class for products with complex 3D geometries where casting is the most suitable production method. With Mg and/or Cu additions, these alloys gain strength upon heat treatment due to the formation of nanoprecipitates. These precipitated phases are of the same kind as in the wrought Al–Mg–Si(–Cu) alloys having much lower Si contents, which have been the subject of a high number of studies. Some of these studies indicate that atomic clusters formed during storage at room temperature have a strong effect on the phases that evolve during artificial aging. In this work, foundry alloys containing Si, Mg, and Cu are investigated. Room-temperature storage is found to have a great influence on kinetics during early aging. Cu additions accelerate the formation of hardening precipitates during early aging, but 1 month of room-temperature storage negates the positive effect of Cu. The maximum achievable strength is found to be limited mainly by the solubility limits of Si and Mg at the solution heat treatment temperature. With insights derived from transmission electron microscopy and atom probe tomography results, this study contributes to the understanding of the solute balance and early aging kinetics and how wrought and foundry alloys differ in these respects.publishedVersio

    Matrix metalloproteinases 2 and 9 increase permeability of sheep pleura in vitro

    Get PDF
    Background: Matrix metalloproteinases (MMPs) 2 and 9 are two gelatinase members which have been found elevated in exudative pleural effusions. In endothelial cells these MMPs increase paracellular permeability via the disruption of tight junction (TJ) proteins occludin and claudin. In the present study it was investigated if MMP2 and MMP9 alter permeability properties of the pleura tissue by degradation of TJ proteins in pleural mesothelium. Results: In the present study the transmesothelial resistance (RTM) of sheep pleura tissue was recorded in Ussing chambers after the addition of MMP2 or MMP9. Both enzymes reduced RTM of the pleura, implying an increase in pleural permeability. The localization and expression of TJ proteins, occludin and claudin-1, were assessed after incubation with MMPs by indirect immunofluorescence and western blot analysis. Our results revealed that incubation with MMPs did not alter neither proteins localization at cell periphery nor their expression. Conclusions: MMP2 and MMP9 increase the permeability of sheep pleura and this finding suggests a role for MMPs in pleural fluid formation. Tight junction proteins remain intact after incubation with MMPs, contrary to previous studies which have shown TJ degradation by MMPs. Probably MMP2 and MMP9 augment pleural permeability via other mechanisms. Backgroun

    Pleural Transport Physiology: Insights from Biological Marker Measurements in Transudates

    Get PDF
    Aims: The aim of this study was to evaluate the physicochemical properties of the pleural mesothelial barrier and of the biological markers that facilitate or eliminate the passage of molecules through the pleura. Methods and Material: Pleural fluid samples from sixty-five patients with heart failure were analyzed. The biological markers studied were lactate dehydrogenase (LDH), adenosine deaminase (ADA), interleukin-6 (IL-6), C reactive protein (CRP), tumor necrosis factor-α (TNF-α), carcinoembryonic antigen (CEA), copper/zinc superoxide dismutase (CuZnSOD), matrix metalloproteinase-2 (MMP-2), -3 (MMP-3), -7(MMP-7), -8 (MMP-8) and -9 (MMP-9). Based on the pleural fluid/serum ratio, these molecules were divided into three groups: a) the LDH-like group with a pleural fluid/serum ratio between 0,4 and 0,8 (LDH, CEA, CuZnSOD, ADA, CRP, MMP-8), b) molecules with a pleural fluid/serum ratio less than 0,4 (MMP-7 and MMP-9) and c) molecules with a pleural fluid/serum ratio equal or above 1 (TNF-α, IL-6, MMP-2 and MMP-3). Results: No correlation between the molecular radius and the pleural fluid to serum ratio of the above biological markers was found. Conclusions: The molecular size is not a major determinant for the passage of molecules through the mesothelial barrier. Several other factors may influence the transport of the above molecules to pleural cavity, such as their charge and shape. © Eleni et al

    Natural antisense RNA inhibits the expression of BCMA, a tumour necrosis factor receptor homologue.

    Get PDF
    BACKGROUND: BCMA (B-cell maturation) belongs to the tumour necrosis factor receptor gene family, and is specifically expressed in mature B lymphocytes. Antisense BCMA RNA is produced by transcription from the same locus and has typical mRNA features, e.g, polyadenylation, splicing, Kozak consensus sequence and an ORF (p12). To investigate the function of antisense BCMA RNA, we expressed BCMA in cell lines, in the presence of antisense p12 or a mutant lacking the initiation ATG codon (p12-ATG). RESULTS: Overexpression of both p12 and p12-ATG antisense BCMA resulted in a large decrease in the amount of BCMA protein produced, with no change in BCMA RNA levels, indicating that BCMA expression is regulated by antisense BCMA RNA at the translational level. We have also observed slight adenosine modifications, suggestive of the activity of a double-stranded RNA-specific adenosine deaminase. CONCLUSION: These data suggest that antisense BCMA may operate under physiological conditions using similar antisense-mediated control mechanisms, to inhibit the expression of the BCMA gene

    Surveillance study of vector species on board passenger ships, Risk factors related to infestations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Passenger ships provide conditions suitable for the survival and growth of pest populations. Arthropods and rodents can gain access directly from the ships' open spaces, can be carried in shiploads, or can be found on humans or animals as ectoparasites. Vectors on board ships may contaminate stored foods, transmit illness on board, or, introduce diseases in new areas. Pest species, ship areas facilitating infestations, and different risk factors related to infestations were identified in 21 ferries.</p> <p>Methods</p> <p>486 traps for insects and rodents were placed in 21 ferries. Archives of Public Health Authorities were reviewed to identify complaints regarding the presence of pest species on board ferries from 1994 to 2004. A detail questionnaire was used to collect data on ship characteristics and pest control practices.</p> <p>Results</p> <p>Eighteen ferries were infested with flies (85.7%), 11 with cockroaches (52.3%), three with bedbugs, and one with fleas. Other species had been found on board were ants, spiders, butterflies, beetles, and a lizard. A total of 431 <it>Blattella germanica </it>species were captured in 28 (9.96%) traps, and 84.2% of them were nymphs. One ship was highly infested. Cockroach infestation was negatively associated with ferries in which Hazard Analysis Critical Control Point system was applied to ensure food safety on board (Relative Risk, RR = 0.23, <it>p </it>= 0.03), and positively associated with ferries in which cockroaches were observed by crew (RR = 4.09, <it>p </it>= 0.007), no cockroach monitoring log was kept (RR = 5.00, <it>p </it>= 0.02), and pesticide sprays for domestic use were applied by crew (RR = 4.00, <it>p </it>= 0.05). Cockroach infested ships had higher age (<it>p </it>= 0.03). Neither rats nor mice were found on any ship, but three ferries had been infested with a rodent in the past.</p> <p>Conclusion</p> <p>Integrated pest control programs should include continuing monitoring for a variety of pest species in different ship locations; pest control measures should be more persistent in older ships. HACCP system aids in the prevention of cockroach infestations on board.</p

    In Silico Transcriptomic Analysis of Wound-Healing-Associated Genes in Malignant Pleural Mesothelioma.

    Get PDF
    Background and objectives: Malignant pleural mesothelioma (MPM) is a devastating malignancy with poor prognosis. Reliable biomarkers for MPM diagnosis, monitoring, and prognosis are needed. The aim of this study was to identify genes associated with wound healing processes whose expression could serve as a prognostic factor in MPM patients. Materials and Methods: We used data mining techniques and transcriptomic analysis so as to assess the differential transcriptional expression of wound-healing-associated genes in MPM. Moreover, we investigated the potential prognostic value as well as the functional enrichments of gene ontologies relative to microRNAs (miRNAs) of the significantly differentially expressed wound-healing-related genes in MPM. Results: Out of the 82 wound-healing-associated genes analyzed, 30 were found significantly deregulated in MPM. Kaplan-Meier analysis revealed that low ITGAV gene expression could serve as a prognostic factor favoring survival of MPM patients. Finally, gene ontology annotation enrichment analysis pointed to the members of the hsa-miR-143, hsa-miR-223, and the hsa-miR-29 miRNA family members as important regulators of the deregulated wound healing genes. Conclusions: 30 wound-healing-related genes were significantly deregulated in MPM, which are potential targets of hsa-miR-143, hsa-miR-223, and the hsa-miR-29 miRNA family members. Out of those genes, ITGAV gene expression was a prognostic factor of overall survival in MPM. Our results highlight the role of impaired tissue repair in MPM development and should be further validated experimentally

    The Effect Of Family And Social Environment On Smoking Behaviour In Adolescence

    Get PDF
    Background: Parental and peer smoking are considered major predictors of smoking in adolescence. We investigate the impact of family and social environment and parental anti-smoking socialization on the intensive and extensive margins of smoking for Greek adolescents. Method and Material: Information on 873 adolescents was collected through a self-reported survey and regression analysis examined associations with five different smoking outcomes (current/lifetime smoking status/intensity and onset). Subgroup analyses and interactions provided further insights. Results: Prevalence of adolescent smoking is high. Family and peer smoking habits and smoking restrictions at home reduce probability and intensity of smoking. Parental smoking increases probability of current smoking by 5% (95% CI: 0.01-0.09) as does having all your friends smoking by 30% (95% CI: 0.16-0.45). Parental anti-smoking advice delays onset of smoking by 0.76 years (95% CI: 0.15-1.39) but does not affect current smoking. Conclusion: Family and social environments play a significant role in preventing or promoting smoking and should be regarded as crucial factors when devising policy to curb adolescent smoking

    Insulin-Induced Electrophysiology Changes in Human Pleura Are Mediated via Its Receptor

    Get PDF
    Background. Insulin directly changes the sheep pleural electrophysiology. The aim of this study was to investigate whether insulin induces similar effects in human pleura, to clarify insulin receptor's involvement, and to demonstrate if glibenclamide (hypoglycemic agent) reverses this effect. Methods. Human parietal pleural specimens were mounted in Ussing chambers. Solutions containing insulin or glibenclamide and insulin with anti-insulin antibody, anti-insulin receptor antibody, and glibenclamide were used. The transmesothelial resistance (RTM) was determined. Immunohistochemistry for the presence of Insulin Receptors (IRa, IRb) was also performed. Results. Insulin increased RTM within 1st min (P = .016), when added mesothelially which was inhibited by the anti-insulin and anti-insulin receptor antibodies. Glibenclamide also eliminated the insulin-induced changes. Immunohistochemistry verified the presence of IRa and IRb. Conclusion. Insulin induces electrochemical changes in humans as in sheep via interaction with its receptor. This effect is abolished by glibenclamide

    Optimizing compositional and atomic-level information of oxides in atom probe tomography

    Full text link
    Atom probe tomography (APT) is a 3D analysis technique that offers unique chemical accuracy and sensitivity with sub-nanometer spatial resolution. Recently, there is an increasing interest in the application of APT to complex oxides materials, giving new insight into the relation between local variations in chemical composition and emergent physical properties. However, in contrast to the field of metallurgy, where APT is routinely applied to study materials at the atomic level, complex oxides and their specific field evaporation mechanisms are much less explored. Here, we perform APT measurements on the hexagonal manganite ErMnO3 and systematically study the effect of different experimental parameters on the measured composition and atomic structure. We demonstrate that both the mass resolving power (MRP) and compositional accuracy can be improved by increasing the charge-state ratio (CSR) working at low laser energy (< 5 pJ). Furthermore, we observe a substantial preferential retention of Er atoms, which is suppressed at higher CSRs. We explain our findings based on fundamental field evaporation concepts, expanding the knowledge about the impact of key experimental parameters and the field evaporation process in complex oxides in general
    corecore