3,470 research outputs found
Systematic analysis of control panel interfaces using formal tools
The paper explores the role that formal modeling may play in aiding the visualization and implementation of usability requirements of a control panel. We propose that this form of analysis should become a systematic and routine aspect of the development Of Such interfaces. We use a notation for describing the interface that is convenient to use by software engineers, and describe a set of tools designed to make the process systematic and exhaustive.We acknowledge with thanks EPSRC grant EP/F01404X/1 and FCT/FEDER grant POSC/EIA/56646/2004. Michael Harrison is grateful to colleagues in the ReSIST NoE (www.resit-noe.org), Jose Campos to Nuno Sousa for work in IVY
Formal verification of interactive computing systems: Opportunities and challenges
Formal verification has the potential to provide a level of evidence based assurance not possible by more traditional development approaches. For this potential to be fulfilled, its integration into existing practices must be achieved. Starting from this premise, the position paper discusses the opportunities created and the challenges faced by the use of formal verification in the analysis of critical interactive computing systems. Three main challenges are discussed: the accessibility of the modelling stage; support for expressing relevant properties; the need to provide analysis results that are comprehensible to a broad range of expertise including software, safety and human factors.This work is financed by the ERDF - European Regional Development Fundthrough the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme and by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, within project POCI-01-0145-FEDER-016826
Verification templates for the analysis of user interface software design
The paper describes templates for model-based analysis of usability and safety aspects of user interface software design. The templates crystallize general usability principles commonly addressed in user-centred safety requirements, such as the ability to undo user actions, the visibility of operational modes, and the predictability of user interface behavior. These requirements have standard forms across different application domains, and can be instantiated as properties of specific devices. The modeling and analysis process is carried out using the Prototype Verification System (PVS), and is further facilitated by structuring the specification of the device using a format that is designed to be generic across interactive systems. A concrete case study based on a commercial infusion pump is used to illustrate the approach. A detailed presentation of the automated verification process using PVS shows how failed proof attempts provide precise information about problematic user interface software features.This work has been funded by the EPSRC research grant EP/G059063/1: CHI+ MED (Computer-Human Interaction for Medical Devices). We are grateful to Harold Thimbleby's team at Swansea University, part of the CHI+ MED project, and especially Patrick Oladimeji who developed the infusion pump simulation that helped us develop the models. We also thank the anonymous reviewers for valuable feedback. Jose C. Campos and Paolo Masci were funded by project NORTE-01-0145-FEDER-000016, financed by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund (ERDF)
Layers, resources and property templates in the specification and analysis of two interactive systems
The paper briefly explores a layered approach to the analysis of two interactive systems (Nuclear Control and Air Traffic Control), indicating how the analysis enables exploration of the particular features emphasised by the use cases relating to the examples. These features relate to the interactive behaviour of the systems. To facilitate the analysis, property templates are proposed as heuristics for developing appropriate requirements for the respective user interfaces.Jose Creissac Campos and Michael Harrison were funded by ´
project ref. NORTE-07-0124-FEDER-000062, co-financed
by the North Portugal Regional Operational Programme
(ON.2 O Novo Norte), under the National Strategic Reference
Framework (NSRF), through the European Regional
Development Fund (ERDF), and by national funds, through
the Portuguese foundation for science and technology (FCT).
Paul Curzon, Michael Harrison and Paolo Masci were funded
by the CHI+MED project: Multidisciplinary Computer Human
Interaction Research for the design and safe use of interactive
medical devices project, UK EPSRC Grant Number
EP/G059063/1.info:eu-repo/semantics/publishedVersio
Automated theorem proving for the systematic analysis of an infusion pump
This paper describes the use of an automated theorem prover to analyse properties of interactive behaviour. It offers an alternative to model checking for the analysis of interactive systems. There are situations, for example when demonstrating safety, in which alternative complementary analyses provide assurance to the regulator. The rigour and detail offered by theorem proving makes it possible to explore features of the design of the interactive system, as modelled, beyond those that would be revealed using model checking. Theorem proving can also speed up proof in some circumstances. The paper illustrates how a theory generated as a basis for theorem proving (using PVS) was developed systematically from a MAL model used to model check the same properties. It also shows how the CTL properties used to check the original model can be translated into theorems.CHI+MED, EPSRC research grant EP/G059063/
Formal verification of a space system's user Interface with the IVY workbench
This paper describes the application of the IVY workbench to the formal analysis of a user interface for a safety-critical aerospace system. The operation manual of the system was used as a requirement document, and this made it possible to build a reference model of the user interface, focusing on navigation between displays, the information provided by each display, and how they are interrelated. Usability-related property specification patterns were then used to derive relevant properties for verification. This paper discusses both the modeling strategy and the analytical results found using the IVY workbench. The purpose of the reference model is to provide a standard against which future versions of the interface may be assessed.EPSRC - Engineering and Physical Sciences Research Council(EP/G059063/1)This work was partly funded by project ref. NORTE-07-0124-FEDER-000062, co-financed by the North Portugal Regional Operational Programme (ON.2 O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF), and by national funds, through the Portuguese foundation for science and technology (FCT)
Formal techniques in the safety analysis of software components of a new dialysis machine
The paper is concerned with the practical use of formal techniques to contribute to the risk analysis of a new neonatal dialysis machine. The described formal analysis focuses on the controller component of the software implementation. The controller drives the dialysis cycle and deals with error management. The logic was analysed using model checking techniques and the source code was analysed formally, checking type correctness conditions, use of pointers and shared memory. The analysis provided evidence of the verification of risk control measures relating to the software component. The productive dialogue between the developers of the device, who had no experience or knowledge of formal methods, and the analyst using the formal analysis tools, provided a basis for the development of rationale for the effectiveness of the evidence. (C) 2019 Elsevier B.V. All rights reserved.This work has been funded by: EPSRC research grants EP/G059063/1 and EP/J008133/1: CHI+MED (Computer -Human Interaction for Medical Devices); and NanoSTIMA (ref. NORTE-01-0145-FEDER-000016) financed by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund (ERDF). Leo Freitas would like to acknowledge EPSRC Trams2 project for financial support, Andrew Sims for providing access to the dialyser, which was used as our case study and Aleksandrs Baklanovs for doing some of the source analysis as part of an undergraduate project
\u3cem\u3eDrosophila Unpaired\u3c/em\u3e Encodes a Secreted Protein that Activates the JAK Signaling Pathway
In vertebrates, many cytokines and growth factors have been identified as activators of the JAK/STAT signaling pathway. In Drosophila, JAK and STAT molecules have been isolated, but no ligands or receptors capable of activating the pathway have been described. We have characterized the unpaired (upd) gene, which displays the same distinctive embryonic mutant defects as mutations in the Drosophila JAK (hopscotch) and STAT (stat92E) genes. Upd is a secreted protein, associated with the extracellular matrix, that activates the JAK pathway. We propose that Upd is a ligand that relies on JAK signaling to stimulate transcription of pair-rule genes in a segmentally restricted manner in the early Drosophila embryo
Desenvolvimento de Jogos Educativos na plataforma APEX : O Jogo da Asma
National audienceA plataforma APEX foi desenvolvida para a prototipagem de ambientes de computação ubĂqua. Neste artigo exploramos a sua aplicabilidade ao desenvolvimento de Jogos SĂ©rios. Ou seja, jogos que para alĂ©m de uma componente lĂşdica, possuem uma componente instrutiva e formativa. Em concreto, descrevemos o Jogo da Asma. Um jogo que pretende chamar a atenção das crianças para os factores causadores de ataques de asma, bem como transmitir conhecimento sobre como os evitar. Para alĂ©m de se descrever o jogo, descrevem-se os resultados de um estudo em que se procurou avaliar quer a viabilidade da utilização da plataforma na criação de jogos sĂ©rios, quer a usabilidade do prĂłprio jogo
Supporting the design of an ambient assisted living system using virtual reality prototypes
APEX, a framework for prototyping ubiquitous environments, is used to design an Ambient Assisted Living (AAL) system to enhance a care home for older people. The environment allows participants in the design process to experience the proposed design and enables developers to explore the design by rapidly developing alternatives. APEX provided the means to explore alternative designs through a virtual environment. It provides a mediating representation (a boundary object) allowing users to be involved in the design process. A group of residents in a city-based care home were involved in the design. The paper describes the design process and lessons learnt for the design of AAL systems.EPSRC - Engineering and Physical Sciences Research Council(EP/G059063/1)Jose C. Campos acknowledges support by the FCT – Fundação para a CiĂŞncia e a Tecnologia (Portuguese Foundation for Science and Technology) within project UID/EEA/50014/2013. JosĂ© LuĂs Silva acknowledges
support from project PEST-OE/EEI/LA0009/2015. Michael Harrison was also funded by EPSRC research grant EP/G059063/1: CHI+MED (Computer–Human Interaction for Medical Devices)
- …