70 research outputs found
Helicopter Ship Board Landing System
Relative navigation of an aircraft (fixed wing or helicopter) close to ships at sea is a unique navigation problem. Shipboard helicopter operations provide a difficult operational environment. Wind over deck and wake turbulence shed by ship super structure offer challenging and unpredictable conditions during takeoff and landing. This is especially true in the operational environment that includes sea-state six, with its associated twenty-foot waves and thirty-three knot winds. Anything other than calm seas can create pitch, roll, yaw, and heave of the landing platform. Different sea going vessels behave in a variety of ways due to their size, hull design, stabilization systems, etc. Of particular concern in this environment is the performance consistency during takeoff, landing and sling load re-supply operations. A helicopter pilot operating off such a platform must observe the heave, pitch, and roll motion of the landing platform and determine the landing contact time based on human reaction time as well as aircraft performance. In an attempt to automate this difficult task, a relative navigation system prototype has been jointly developed by Novatel and Boeing.
This paper describes such a system. The relative navigation system consists of a pair of integrated Inertial Differential Global Positioning System (IDGPS) systems communicating with standard RTCA messages. A fixed integer carrier based solution enables the relative system to reduce the uncorrelated low latency position error between the two systems to less than 50 cm. The shipbased inertial unit provides its position, attitude, pseudorange and carrier measurements, as well as the position of an eccentric point (the landing mark) to the helicopter-based unit. The helicopter generates a precise carrier-based vector between the vessel and its antenna and uses this to compute a GPS position that has a high relative accuracy to the ship-based unit. This in turn is used to update the helicopter inertial unit so a low latency position can be generated there. From this, a high accuracy, low latency relative position is generated at the helicopter, along with the relative motion and attitude data required for safe and consistent landing or slinging operations.
The system requirements and design are detailed, and an attempt is made to provide insight into the implementation difficulties and solutions. Test setup details and results are provided.
Reprinted with permission from The Institute of Navigation (http://ion.org/) and The Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation, (pp. 979-988). Fairfax, VA: The Institute of Navigation
Search Experiments
The IMLS-funded Variations FRBR project has developed a faceted search interface, Scherzo, that works on top of 80,000 FRBRized MARC records. This talk includes a demo of Scherzo and compares the Scherzo user experience with the experience of searching for sound recordings in IUCAT. In addition, we describe and demonstrate other recent experiments in search, including Blacklight and the eXtensible Catalog
Helicopter main-rotor speed effects on far-field acoustic levels
The design of a helicopter is based on an understanding of many parameters and their interactions. For example, in the design stage of a helicopter, the weight, engine, and rotor speed must be considered along with the rotor geometry when considering helicopter operations. However, the relationship between the noise radiated from the helicopter and these parameters is not well understood, with only limited model and full-scale test data to study. In general, these data have shown that reduced rotor speeds result in reduced far-field noise levels. This paper reviews the status of a recent helicopter noise research project designed to provide experimental flight data to be used to better understand helicopter rotor-speed effects on far-field acoustic levels. Preliminary results are presented relative to tests conducted with a McDonnell Douglas model 500E helicopter operating with the rotor speed as the control variable over the range of 103% of the main-rotor speed (NR) to 75% NR, and with the forward speed maintained at a constant value of 80 knots
Recommended from our members
Predicting breast cancer response to neoadjuvant treatment using multi-feature MRI: results from the I-SPY 2 TRIAL.
Dynamic contrast-enhanced (DCE) MRI provides both morphological and functional information regarding breast tumor response to neoadjuvant chemotherapy (NAC). The purpose of this retrospective study is to test if prediction models combining multiple MRI features outperform models with single features. Four features were quantitatively calculated in each MRI exam: functional tumor volume, longest diameter, sphericity, and contralateral background parenchymal enhancement. Logistic regression analysis was used to study the relationship between MRI variables and pathologic complete response (pCR). Predictive performance was estimated using the area under the receiver operating characteristic curve (AUC). The full cohort was stratified by hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) status (positive or negative). A total of 384 patients (median age: 49 y/o) were included. Results showed analysis with combined features achieved higher AUCs than analysis with any feature alone. AUCs estimated for the combined versus highest AUCs among single features were 0.81 (95% confidence interval [CI]: 0.76, 0.86) versus 0.79 (95% CI: 0.73, 0.85) in the full cohort, 0.83 (95% CI: 0.77, 0.92) versus 0.73 (95% CI: 0.61, 0.84) in HR-positive/HER2-negative, 0.88 (95% CI: 0.79, 0.97) versus 0.78 (95% CI: 0.63, 0.89) in HR-positive/HER2-positive, 0.83 (95% CI not available) versus 0.75 (95% CI: 0.46, 0.81) in HR-negative/HER2-positive, and 0.82 (95% CI: 0.74, 0.91) versus 0.75 (95% CI: 0.64, 0.83) in triple negatives. Multi-feature MRI analysis improved pCR prediction over analysis of any individual feature that we examined. Additionally, the improvements in prediction were more notable when analysis was conducted according to cancer subtype
An Empirical Comparison of Consumer Innovation Adoption Models: Implications for Subsistence Marketplaces
So called “pro-poor” innovations may improve consumer wellbeing in subsistence marketplaces. However, there is little research that integrates the area with the vast literature on innovation adoption. Using a questionnaire where respondents were asked to provide their evaluations about a mobile banking innovation, this research fills this gap by providing empirical evidence of the applicability of existing innovation adoption models in subsistence marketplaces. The study was conducted in Bangladesh among a geographically dispersed sample. The data collected allowed an empirical comparison of models in a subsistence context. The research reveals the most useful models in this context to be the Value Based Adoption Model and the Consumer Acceptance of Technology model. In light of these findings and further examination of the model comparison results the research also shows that consumers in subsistence marketplaces are not just motivated by functionality and economic needs. If organizations cannot enhance the hedonic attributes of a pro-poor innovation, and reduce the internal/external constraints related to adoption of that pro-poor innovation, then adoption intention by consumers will be lower
Toward the integrated marine debris observing system
Plastics and other artificial materials pose new risks to the health of the ocean. Anthropogenic debris travels across large distances and is ubiquitous in the water and on shorelines, yet, observations of its sources, composition, pathways, and distributions in the ocean are very sparse and inaccurate. Total amounts of plastics and other man-made debris in the ocean and on the shore, temporal trends in these amounts under exponentially increasing production, as well as degradation processes, vertical fluxes, and time scales are largely unknown. Present ocean circulation models are not able to accurately simulate drift of debris because of its complex hydrodynamics. In this paper we discuss the structure of the future integrated marine debris observing system (IMDOS) that is required to provide long-term monitoring of the state of this anthropogenic pollution and support operational activities to mitigate impacts on the ecosystem and on the safety of maritime activity. The proposed observing system integrates remote sensing and in situ observations. Also, models are used to optimize the design of the system and, in turn, they will be gradually improved using the products of the system. Remote sensing technologies will provide spatially coherent coverage and consistent surveying time series at local to global scale. Optical sensors, including high-resolution imaging, multi- and hyperspectral, fluorescence, and Raman technologies, as well as SAR will be used to measure different types of debris. They will be implemented in a variety of platforms, from hand-held tools to ship-, buoy-, aircraft-, and satellite-based sensors. A network of in situ observations, including reports from volunteers, citizen scientists and ships of opportunity, will be developed to provide data for calibration/validation of remote sensors and to monitor the spread of plastic pollution and other marine debris. IMDOS will interact with other observing systems monitoring physical, chemical, and biological processes in the ocean and on shorelines as well as the state of the ecosystem, maritime activities and safety, drift of sea ice, etc. The synthesized data will support innovative multi-disciplinary research and serve a diverse community of users
The Ecosystem of Repository Migration
Indiana University was an early adopter of the Fedora repository, developing it as a home for heterogeneous digital library content from a variety of collections with unique content models. After joining the Hydra Project, now known as Samvera, in 2012, development progressed on a variety of applications that formed the foundation for digital library services using the Fedora 4 repository. These experiences have shaped migration planning to move from Fedora 3 to Fedora 4 for this large and inclusive set of digital content. Moving to Fedora 4 is not just a repository change; it is an ecosystem shift. End user interfaces for access, management systems for collection managers, and data structures are all impacted. This article shares what Indiana University has learned about migrating to Fedora 4 to help others work through their own migration considerations. This article is also meant to inspire the Fedora repository development community to offer ways to further ease migration work, sustaining Fedora users moving forward, and inviting new Fedora users to try the software and become involved in the community
Scherzo: A FRBR-Based Music Discovery System
The Scherzo music discovery system is one deliverable from the Variations/FRBR (V/FRBR) project at Indiana University (Riley, 2010). The objective of the V/FRBR project is to provide a real-world test of the Functional Requirements for Bibliographic Records (FRBR) model (IFLA, 1998) in the domain of music. In addition to creating a schema and FRBRization algorithm to populate a repository with data drawn from MARC bibliographic records, one experiment in the utility of the FRBR model has been to create a discovery system based on the FRBRized data, to explore the value of exposing FRBR structuring in the discovery interface
Airborne tests of an OAWL Doppler lidar: Results and potential for space deployment
The 532 nm Green Optical Covariance Wind
Lidar (GrOAWL) was flown on a NASA WB-57
research aircraft during the summer of 2016 to
validate the instrument design and evaluate wind
measurement capability and sensitivity.
Comparisons with dropsondes and atmospheric
models showed good agreement, demonstrating
that a GrOAWL type instrument could provide
high-value wind measurements from both
airborne and space-based platform
- …