67 research outputs found

    Fluctuation theorem for counting-statistics in electron transport through quantum junctions

    Get PDF
    We demonstrate that the probability distribution of the net number of electrons passing through a quantum system in a junction obeys a steady-state fluctuation theorem (FT) which can be tested experimentally by the full counting statistics (FCS) of electrons crossing the lead-system interface. The FCS is calculated using a many-body quantum master equation (QME) combined with a Liouville space generating function (GF) formalism. For a model of two coupled quantum dots, we show that the FT becomes valid for long binning times and provide an estimate for the finite-time deviations. We also demonstrate that the Mandel (or Fano) parameter associated with the incoming or outgoing electron transfers show subpoissonian (antibunching) statistics.Comment: 20 pages, 12 figures, accepted in Phy.Rev.

    Exploring Foundations of Time-Independent Density Functional Theory for Excited-States

    Full text link
    Based on the work of Gorling and that of Levy and Nagy, density-functional formalism for many Fermionic excited-states is explored through a careful and rigorous analysis of the excited-state density to external potential mapping. It is shown that the knowledge of the ground-state density is a must to fix the mapping from an excited-state density to the external potential. This is the excited-state counterpart of the Hohenberg-Kohn theorem, where instead of the ground-state density the density of the excited-state gives the true many-body wavefunctions of the system. Further, the excited-state Kohn-Sham system is defined by comparing it's non-interacting kinetic energy with the true kinetic energy. The theory is demonstrated by studying a large number of atomic systems.Comment: submitted to J. Chem. Phy

    Quantum master equation for electron transport through quantum dots and single molecules

    Get PDF
    A quantum master equation (QME) is derived for the many-body density matrix of an open current-carrying system weakly coupled to two metal leads. The dynamics and the steady-state properties of the system for arbitrary bias are studied using projection operator techniques, which keep track of number of electrons in the system. We show that coherences between system states with different number of electrons, n, (Fock space coherences) do not contribute to the transport to second order in system-lead coupling. However, coherences between states with the same n may effect transport properties when the damping rate is of the order or faster then the system Bohr frequencies. For large bias, when all the system many-body states lie between the chemical potentials of the two leads, we recover previous results. In the rotating wave approximation (when the damping is slow compared to the Bohr frequencies of the system), the dynamics of populations and the coherences in the system eigenbasis are decoupled. The QME then reduces to a birth and death master equation for populations.Comment: 22 pages, 8 figures, paper accepted in Phys. Rev.

    Multiple Core-Hole Coherence in X-Ray Four-Wave-Mixing Spectroscopies

    Full text link
    Correlation-function expressions are derived for the coherent nonlinear response of molecules to three resonant ultrafast pulses in the x-ray regime. The ability to create two-core-hole states with controlled attosecond timing in four-wave-mixing and pump probe techniques should open up new windows into the response of valence electrons, which are not available from incoherent x-ray Raman and fluorescence techniques. Closed expressions for the necessary four-point correlation functions are derived for the electron-boson model by using the second order cumulant expansion to describe the fluctuating potentials. The information obtained from multidimensional nonlinear techniques could be used to test and refine this model, and establish an anharmonic oscillator picture for electronic excitations

    Local-density approximation for exchange energy functional in excited-state density functional theory

    Full text link
    An exchange energy functional is proposed and tested for obtaining a class of excited-state energies using density functional formalism. The functional is the excited-state counterpart of the local-density approximation functional for the ground state. It takes care of the state dependence of the energy functional and leads to highly accurate excitation energies

    Positron and positronium affinities in the work-formalism Hartree-Fock approximation

    Full text link
    Positron binding to anions is investigated within the work formalism proposed by Harbola and Sahni for the halide anions and the systems Li^- through O^- excluding Be^- and N^-. The toal ground-state energies of the anion-positron bound systems are empirically found to be an upper bound to the Hartree-Fock energies. The computed expectation values as well as positron and positronium affinities are in good agreement with their restricted Hartree-Fock counterparts. Binding of a positron to neutral species is also investigated using an iterative method.Comment: 12 pages, to appear in Physical Review

    A self-consistent quantum master equation approach to molecular transport

    Full text link
    We propose a self-consistent generalized quantum master equation (GQME) to describe electron transport through molecular junctions. In a previous study [M.Esposito and M.Galperin. Phys. Rev. B 79, 205303 (2009)], we derived a time-nonlocal GQME to cure the lack of broadening effects in Redfield theory. To do so, the free evolution used in the Born-Markov approximation to close the Redfield equation was replaced by a standard Redfield evolution. In the present paper, we propose a backward Redfield evolution leading to a time-local GQME which allows for a self-consistent procedure of the GQME generator. This approach is approximate but properly reproduces the nonequilibrium steady state density matrix and the currents of an exactly solvable model. The approach is less accurate for higher moments such as the noise.Comment: 9 pages, 4 figure

    Dynamic image potential at an Al(111) surface

    Get PDF
    We evaluate the electronic self-energy Sigma(E) at an Al(111) surface using the GW space-time method. This self-energy automatically includes the image potential V-im not present in any local-density approximation for exchange and correlation. We solve the energy-dependent quasiparticle equations and calculate the effective local potential experienced by electrons in the near-surface region. The relative contribution of exchange proves to be very different for states above the Fermi level. The image-plane position for interacting electrons is closer to the surface than for the purely electrostatic effects felt by test charges, and, like its classical counterpart, is drawn inwards by the effects of atomic structure

    Fluctuations in Nonequilibrium Statistical Mechanics: Models, Mathematical Theory, Physical Mechanisms

    Get PDF
    The fluctuations in nonequilibrium systems are under intense theoretical and experimental investigation. Topical ``fluctuation relations'' describe symmetries of the statistical properties of certain observables, in a variety of models and phenomena. They have been derived in deterministic and, later, in stochastic frameworks. Other results first obtained for stochastic processes, and later considered in deterministic dynamics, describe the temporal evolution of fluctuations. The field has grown beyond expectation: research works and different perspectives are proposed at an ever faster pace. Indeed, understanding fluctuations is important for the emerging theory of nonequilibrium phenomena, as well as for applications, such as those of nanotechnological and biophysical interest. However, the links among the different approaches and the limitations of these approaches are not fully understood. We focus on these issues, providing: a) analysis of the theoretical models; b) discussion of the rigorous mathematical results; c) identification of the physical mechanisms underlying the validity of the theoretical predictions, for a wide range of phenomena.Comment: 44 pages, 2 figures. To appear in Nonlinearity (2007

    Work functions, ionization potentials, and in-between: Scaling relations based on the image charge model

    Full text link
    We revisit a model in which the ionization energy of a metal particle is associated with the work done by the image charge force in moving the electron from infinity to a small cut-off distance just outside the surface. We show that this model can be compactly, and productively, employed to study the size dependence of electron removal energies over the range encompassing bulk surfaces, finite clusters, and individual atoms. It accounts in a straightforward manner for the empirically known correlation between the atomic ionization potential (IP) and the metal work function (WF), IP/WF\sim2. We formulate simple expressions for the model parameters, requiring only a single property (the atomic polarizability or the nearest neighbor distance) as input. Without any additional adjustable parameters, the model yields both the IP and the WF within \sim10% for all metallic elements, as well as matches the size evolution of the ionization potentials of finite metal clusters for a large fraction of the experimental data. The parametrization takes advantage of a remarkably constant numerical correlation between the nearest-neighbor distance in a crystal, the cube root of the atomic polarizability, and the image force cutoff length. The paper also includes an analytical derivation of the relation of the outer radius of a cluster of close-packed spheres to its geometric structure.Comment: Original submission: 8 pages with 7 figures incorporated in the text. Revised submission (added one more paragraph about alloy work functions): 18 double spaced pages + 8 separate figures. Accepted for publication in PR
    corecore