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We demonstrate that the probability distribution of the net number of electrons passing through a quantum
system in a junction obeys a steady-state fluctuation theorem �FT� which can be tested experimentally by the
full counting statistics �FCS� of electrons crossing the lead-system interface. The FCS is calculated using a
many-body quantum master equation combined with a Liouville space generating function formalism. For a
model of two coupled quantum dots, we show that the FT becomes valid for long binning times, and provide
an estimate for the finite-time deviations. The Mandel �or Fano� parameter associated with the incoming or
outgoing electron transfers shows sub-Poissonian �antibunching� statistics.
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I. INTRODUCTION

Various far-from-equilibrium relations, such as the
Jarzynski relation1–3 or the fluctuation theorem �FT�,4–10 de-
rived during the past decade, provide new insights into the
emergence of irreversible processes in classical systems.11,12

These relations follow from the observation that the ratio of
the probability of a system forward and time-reversed trajec-
tory is given by the exponential of a quantity, the trajectory
entropy production, which when ensemble averaged, gives
the entropy production in the system. These relations quan-
tify the probabilities of observing “nonthermodynamic” tra-
jectories with decreased trajectory entropy production. These
probabilities are infinitesimally small in the macroscopic
world but are non-negligible in microscopic systems. How-
ever, the ensemble averaged dynamics always satisfies the
second law �entropy production always grows�. With the re-
cent progress in nano and mesoscopic sciences, these prob-
abilities can now be measured.13,14 Because in the micro-
scopic world quantum effects can be important, it is
interesting to establish whether these fluctuation relations re-
main true in the quantum regime. This is still an open
issue.15–21 One of the major obstacles for a general formula-
tion of a quantum FT is the lack of a clear concept of a
measurable trajectory. It is therefore helpful to consider sys-
tems undergoing a well-defined measurement process. In the
counting statistics of photons emitted by an atom or a mol-
ecule driven out of equilibrium by a laser field,22–30 a trajec-
tory picture is provided by the history of the detected pho-
tons. However, the reverse trajectory �where the laser mode
absorbs a photon from the molecule� is not easily measur-
able. Electron counting statistics provides, on the other hand,
a clear trajectory picture given by the history of the electron
transfers between the system and the leads, where the reverse
trajectory �electron moving against the bias� is a measurable
quantity. Electron counting statistics in nanosystems has at-
tracted recent interest.31–41 Individual electrons crossing
quantum dots have been measured.42–45 Measuring the statis-
tics of both forward and backward electron transfer events
which is essential for verifying the FT has recently been
reported in Ref. 46. Most studies have focused on the few
lowest moments of the distribution. However, the FT is con-
nected with the probabilities of large fluctuations which re-

quire the knowledge of the entire probability distribution.
In this paper, we use the many-electron quantum master

equation �QME� derived in Ref. 47 and the generating op-
erator �GO� formalism in Liouville space developed for pho-
ton counting statistics22–28 to calculate the full counting sta-
tistics �FCS� of electrons in biased quantum junctions. Our
central formal result is an equation of motion for the GO
whose solution can provide the full electron-transfer prob-
ability distribution. Neglecting electron-electron interactions,
this GO can be factorized into products of single orbital GO,
each leading to a statistics similar to the one of the single
resonant-level system studied in Ref. 41. By constructing the
current GO from the full electron counting GO, we show that
the probability distribution of the net number of electrons
k entering the system from one of the system-lead interface
�k�t�=− 1

e �0
t d�I���, where I��� is the current and t is the

measurement time also called binning time�, satisfies

Pt�k� / Pt�−k� =
t→�

exp��eVk�, where eV is the difference be-
tween the left and right lead chemical potentials and
�= �kbT�−1 is the inverse temperature. The probability of ob-
serving a current in the direction favored by the bias voltage
V is exponentially larger than that of measuring the reverse
current. For a nonbiased junction the two currents are equi-
probable.

The QME presented in Sec. II is used to calculate the FCS
of electrons in Sec. III. In Sec. IV, we define the GO for the
net number of electron transfer and show that the FT holds
for long measurement times. In Sec. V we derive closed
expressions for the current and its power spectrum and for
the Mandel parameter. In Sec. VI, we calculate the probabil-
ity distribution for the net number of electron transfer for a
model of two-coupled quantum dots and analyze the finite-
time deviations to the FT. We also study the behavior of the
average current and Mandel parameter as a function of the
bias and temperature. Conclusions are drawn is Sec. VII.

II. QUANTUM MASTER EQUATION

The quantum junction is made of a system �e.g., quantum
dot or single molecule� coupled to two leads. The system
Hamiltonian reads HS=�s�scs

†cs, where cs
† �cs� is the Fermi

creation �annihilation� operator for the s system orbital. The
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Hamiltonian of the left �right� lead is HL=�l�lcl
†cl �HR

=�r�rcr
†cr�, where l �r� runs over all the left �right� lead

orbitals. The entire junction Hamiltonian is H=HS+HL+HR
+HT where HT=�s��Ts�cs

†c�+H.c . � is the system-leads cou-
pling ��= l ,r�. In Ref. 47, we used second-order perturbation
theory in the lead-system interaction and projection operators
in the number of electrons in the system to derive a QME
describing the dynamics of the reduced system density
matrix. The QME can be viewed as a Redfield equation48 in
Fock space which only contains coherences between states
with the same number of electrons. When the relaxation in-
duced by the leads is much slower than the Bohr frequencies
of the system, the fast oscillations in the interaction picture
can be averaged out. This approximation, known as the
rotating-wave approximation �RWA� in quantum optics, is
often performed on the Redfield equation to guarantee that
the final QME is of the Lindblad form.48–52 Our QME finally
reads

�̇n = − i�HS,�n� + �
s

�vsscs�
n+1cs

† + wsscs
†�n−1cs − vsscs

†cs�
n

− wss�
ncscs

† + H.c.� , �1�

where �n is the reduced density matrix of the system pro-
jected into the n electron part of the Fock space. The com-
plete system density matrix is given by �=�n�n. When
summed over n, Eq. �1� gives an equation for the total �
which is of the Lindblad form.47 vss’s and wss’s are related to
lead correlation functions. Assuming a quasicontinuous spec-
tra for the leads, and neglecting the level shift contributions
�which only modify the bare Bohr frequencies of the sys-
tem�, we have

vss � �
y

vss
�y�; wss � �

y

wss
�y�, �2�

where

vss
�y� = �ny��s��Ts

�y���s��2�1 − fy��s�� ,

wss
�y� = �ny��s��Ts

�y���s��2fy��s� . �3�

ny��� is the density of state of the left or right lead �y
=L ,R� at energy �. fy����1/ 	exp����−	y��+1
 denotes the
Fermi distribution of the y lead and 	y is its chemical poten-
tials. We assume 	R=	0 and 	L=	0+eV, where V is the
bias �see Fig. 1�. wss

�y� is the electron transfer rate from lead y
to the s orbital and vss

�y� is the rate for the reverse process.
These obey the relation

vss
�y� = e���s−	y�wss

�y�, �4�

so that

vss
�R�wss

�L�

vss
�L�wss

�R� = e�eV. �5�

III. GENERATING FUNCTION FOR ELECTRON-
COUNTING STATISTICS

We consider a system with M orbitals and n spinless elec-
trons, so that n=0,1 , . . . ,M. The number of n-electron

many-body states �hereafter denoted states� is given by Cn
M

= M!
�M−n�!n! . The total number of Fock space states is Ntot

=�n=0
M Cn

M =2M. As a result of the weak lead-system coupling
and infinite leads assumption, the Fock space coherences
�FSCs� between many-body states with different n are ne-
glected and the number of elements of the full many-body
density matrix reduces from Ntot

2 =4M to Nred
2 =�n=0

M �Cn
M�2.

The space of the density matrices where FSCs have been
eliminated constitute our reduced Liouville space. By ex-
panding the QME �1� in the eigenbasis of the system, the
population dynamics obeys a birth and death master equation
which is decoupled from the coherence dynamics. Electron-
transfer events are counted by identifying the terms in the
QME which are responsible for the transitions between the
populations. Their sequence constitutes a “trajectory.”

We shall recast the QME �1� in our reduced Liouville
space as

���̇�� = �L̂ + 
̂ + �̂������ � M̂����� . �6�

M̂ is the generator of the QME. L̂ describes the isolated
system dynamics

FIG. 1. Schematic representation of the model of two quantum
dots a and b coupled in series between two leads used for our
numerical results. The upper part depicts the system in the local
basis where the Hamiltonian of the dots reads HS=�i,jHijci

†cj,
where Haa=Ea=2, Hbb=Eb=5, and Hab=Hba

* =�=1. The coupling
element with the leads are Tal=0.5, Tbr=0.3, and Tar=Tbl=0. The
lower part depicts the system in the eigenbasis where the Hamil-
tonian becomes HS=�s�scs

†cs, with �1=1.697 and �2=5.303. The
couplings with the leads become T1r=−0.479, T2l=0.145, T1r

=0.087, T2r=0.287. We choose 	0=0 and ny��s�=�−1 as well as
e=1, =1, and kb=1, so that the units of energy and temperature is
� and the time unit �−1. The four possible types of electron transfer
�and their associated currents� are represented by the big dashed
arrow.
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L̂ = − i�
s

�s�cs
†cs, · � . �7�

We denote the four possible processes depicted in Fig. 1 by
�=1,2 ,3 ,4. �=1 and �=3 represent electron transfer from
the system to the left and the right lead whereas �=2 and
�=4 represent the electron transfer from the left and the
right lead to the system. The orbital through which electron

transfer occurs is denoted by s. �̂ is responsible for electron
transfers and is made of the nondiagonal terms of the gen-
erator which couple the populations

�̂ = �
�

�̂�, �8�

where �= �� ,s�, ��=��=1
4 �s=1

M , and

�̂�1,s� � 2vss
�L�cs · cs

†; �̂�2,s� � 2wss
�L�cs

† · cs,

�̂�3,s� � 2vss
�R�cs · cs

†; �̂�4,s� � 2wss
�R�cs

† · cs. �9�


̂ describes the diagonal terms of the generator


̂ = �
�


̂�. �10�

In analogy to �̂, we identify the various contributions to 
̂
from the different active orbitals


̂�1,s� � − vss
�L��cs

†cs, · �+; 
̂�2,s� � wss
�L��cscs

†, · �+,


̂�3,s� � − vss
�R��cs

†cs, · �+; 
̂�4,s� � wss
�R��cscs

†, · �+. �11�

We can now calculate the full electron counting statistics
using the formalism developed for photon counting
statistics.22–30 Starting with a trajectory picture of the QME
evolution in terms of electron transfer histories, we shall cal-
culate the probabilities of these trajectories and their associ-
ated generating function �GF�.

The system density matrix conditional to measuring k
electron transfers during an interval of time t is denoted
��k��t�. We use the compact notation defined in Appendix A
�see Eq. �A7��. k is a vector with components k�. The prob-
ability to measure k electron transfers during a time interval
t is obtained by tracing the conditional system density matrix

P�t,k� = ��I���k��t��� . �12�

The trace of a Hilbert space operator A, Tr A, is denoted as a
scalar product in Liouville space ��I �A��, where I is the unity
operator.

The generating function �GF� associated with this prob-
ability distribution is defined as

G�t,�� � �
k

P�t,k�e�·k, �13�

where � ·k=����k�. Similarly, we define the generating op-
erator �GO� as

��G�t,���� � �
k

����k��t���e�·k. �14�

The GF is obtained by tracing the GO

G�t,�� = ��I�G�t,���� . �15�

An evolution equation for the GO is derived in Appendix A
starting with the QME

��Ġ�t,���� = Ŵ�����G�t,���� , �16�

where

Ŵ��� = M̂ + �
�

�e�� − 1��̂� �17�

is the generator of the GO evolution equation. Using the
initial condition �G�0;����= ���0���, the solution of Eq. �16�,
given in Appendix B, provides the GF at all times,

G�t,�� = ��I�eŴ���t���0��� . �18�

The GF contains the entire information about the electron
counting statistics. The probability distribution is obtained by
inverting Eq. �13�,

P�t,k� = 
0

2�

d�G�t,i��e−i�·k. �19�

Moments of the distribution are given by derivatives of the
GF,

� �n1

���1

n1

�n2

���2

n2
¯

�nN

���N

nN
G�t,���

�=0

= �k�1

n1k�2

n2
¯ k�N

nN�t. �20�

We also define

S��� � − lim
t→�

1

t
ln G�t,�� . �21�

This will be useful to calculate the statistical properties of
steady-state currents.

IV. FLUCTUATION THEOREM FOR THE NET NUMBER
OF ELECTRONS TRANSFERRED

We will now focus on the statistical properties of the
charge currents across the junction. We adopt the standard
convention that the direction of the charge current is opposite
to the electron transfers �see Fig. 1�. The number of electrons
transferred via process � through orbital s during a time
interval t is given by

k��t� = −
1

e


0

t

d�I���� , �22�

where I���� is the corresponding charge current ��= �� ,s��.
The net number of electron transfer events between the left
�right� lead-system interface, through orbital s, during time t
is

k�L,s��t� � k�2,s��t� − k�1,s��t� = −
1

e


0

t

d�I�L,s���� ,
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k�R,s��t� � k�3,s��t� − k�4,s��t� = −
1

e


0

t

d�I�R,s���� , �23�

where the charge current at the left �right� lead-system inter-
face passing through the s’th system orbital is given by
I�L,s��t�� I�2,s��t�− I�1,s��t� �I�R,s��t�� I�3,s��t�− I�4,s��t��. The GF
associated with the left and right net number of electron
transfer G�t ,�L ,�R� is the GF of the FCS G�t ,�� where
��1,s�=−��2,s����L,s�and ��4,s�=−��3,s����R,s�. Defining the
vectors �L ��R� with components ��L,s� ���R,s��, we have

G�t,�L,�R� = �
�L,�R

P�t,kL,kR�e−�L·kLe−�R·kR. �24�

For clarity, we hereafter consider the left GF. The right one
may be calculated similarly. The GF for the left net number

of electron transfer G�t ,�L� is defined from Eq. �24� by tak-
ing �R=0. Using Eq. �B9�, we find that the generator

Ŵs���L,s�� of the evolution of the single orbital GF
Gs�t ,��L,s�� for the net number of electron transfer, via the
single orbital s, through the left lead-system interface is
given by

Gs�t,��L,s�� = c+�0�eg+���L,s��t�g1;1
+ ���L,s�� + g0;0

+ ���L,s���

+ c−�0�eg−���L,s��t�g1;1
− ���L,s�� + g0;0

− ���L,s��� ,

�25�

where, using Eqs. �B8� and �5�, the eigenvalues of the gen-
erator are given by

g±���L,s�� = − �vss + wss

2
� ±��vss + wss

2
�2

+ vss
�R�wss

�L��e−�eV�e��L,s� − 1� + �e−��L,s� − 1�� . �26�

These possess the symmetry g���L,s��=g��eV−��L,s�� so that,
using Ss���L,s���−limt→�

1
t ln Gs�t ,��L,s�� and Eq. �25�,

Ss���L,s�� = Ss��eV − ��L,s�� . �27�

In Appendix B, we show that the many-body GF can be
factorized into a product of single orbital GF �see Eq. �B10��.
The GF for the total current �irrespective of the carrying
orbitals by setting ��L,s�=�L in �L� can therefore be written

G�t,�L� = �
m

M

egm��L�t��I�gm��L�����g̃m��L����0��� , �28�

where gm��L�, �gm��L��� and ��g̃m��L�� are, respectively, the
many-body eigenvalues, the right and the left eigenvector of
the generator. Since the many-body eigenvalues correspond-
ing to populations are made of 2M possible sums of single-
body orbital eigenvalues �26�, they also satisfy the symmetry
g��L�=g��eV−�L� so that, using Eq. �21�,

S��L� = S��eV − �L� . �29�

An important point is that the eigenvalues of the generator
associated with the right GF are the same as those of the left
GF so that S��L�=S��R�. The eigenvectors will, however, be
different and G�t ,�L��G�t ,�R�. This means that, in general,
the electron-transfer statistics at the left and right interface of
the junction can be different. However, the statistical prop-
erties which can be obtained from S��� are the same on the
two interfaces. These include, for example, the FT �which
follows from Eq. �29��, the steady-state average current �see
Eq. �D2��, the current power spectrum at zero frequency �see
Eq. �D5��, or the asymptotic value of the Mandel parameter
�see Eq. �D8��. Hereafter, we therefore omit the L ,R labeling
in the corresponding quantities.

In Appendix C, we use the theory of large deviations to
show that the symmetry �29� implies at long times

P�t,k�
P�t,− k�

=
t→�

e�eVk. �30�

This is the FT for the net number of electrons k crossing the
junction at each system-lead interface. Using Eq. �27�, we
note that the FT also holds for the net number of charges
which passed through each orbital k�y,s� �y=L ,R�. A similar
result was pointed out in Ref. 53 for a single resonant level
in the large Coulomb repulsion limit excluding double occu-
pancy. The FT implies that measuring electron transfers in
the direction favored by the bias is exponentially more prob-
able than the reverse process. The argument of the exponen-
tial is proportional to the nonequilibrium constrains of the
junction �eV so that at equilibrium �V=0� the two probabili-
ties are identical.

V. AVERAGE CURRENT, MANDEL PARAMETER,
AND POWER SPECTRUM

In Appendix D, we show how currents, moments, and
cumulants can be obtained from the GF. Using these results
and the expressions for the eigenvalue with the smallest ab-
solute value of the GF generators �B8�, we derive closed
expressions for the steady-state currents, their zero frequency
power spectrum, and the asymptotic value of the Mandel
parameter.

Using Eqs. �D2� and �B8�, the four steady-state average
currents through orbital s are given by

�I�1,s��st = − 2evss
�L� wss

vss + wss
, �I�2,s��st = − 2ewss

�L� vss

vss + wss
,
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�I�3,s��st = − 2evss
�R� wss

vss + wss
, �I�4,s��st = − 2ewss

�R� vss

vss + wss
.

�31�

The total current associated with the process � is obtained by
summing over the orbitals �I��st=�s

M�I��,s��st. The Fano pa-
rameter F��t� and the closely related Mandel parameter M��t�
of each of these processes �= �� ,s� are defined as

F��t� � M��t� + 1 �
�k�

2� − �k��t
2

�k��t
. �32�

The Mandel parameter vanishes for a Poisson process.
M �0 �M �0� implies sub-Poissonian �super-Poissonian�
statistics. At steady state, using Eq. �D7�, we find

M���� =
1

e

�I��st

vss + wss
. �33�

Another quantity of interest is the zero-frequency power
spectrum of the current A�� associated with the processes �
�see Eq. �D5��. M��t� and F��t� are easily related to it by
A��=e�I��stF����. The zero-frequency power spectrum for
the total current associated with the process � is given by
A�=�s

MA��. The Mandel or Fano parameters cannot be ex-
pressed as such an orbital sum. It is therefore convenient to
calculate them from S� and �I��st.

Similarly as for the � processes, we can use Eq. �26� to
calculate the statistical properties of a given junction inter-
face. Using Eq. �D2�, the average steady state current via the
s orbital reads

�Is�st = 2e�vss
�L�wss

�R� − vss
�R�wss

�L�

vss + wss
� . �34�

Using Eq. �D5�, the corresponding zero-frequency power
spectrum of the current is given by

Ass =
�Is�st

2

vss + wss
− 2e2�vss

�L�wss
�R� + vss

�R�wss
�L�

vss + wss
� , �35�

and A=�s
MAss.

VI. TWO COUPLED QUANTUM DOT MODEL

We have calculated the probability distribution of the net
number of electron transfer at the left lead-system interface
for a model of two coupled quantum dots a and b. Quantities
in local basis will be denoted by a tilde. The Hamiltonian of
the dots in the local basis reads

H̃s = ��a �

� �b
� . �36�

In the orbital eigenbasis, Hs is a diagonal matrix with eigen-
values

�1,2 =
�a + �b

2
±�� �a − �b

2
�2

+ �2. �37�

The orbitals are labeled s=1,2. The two Hamiltonians are

connected by a unitary transformation Hs=UH̃sU
†, and simi-

larly �=U�̃U† and �=U�̃U†. We define the couplings be-
tween the leads and the dots in the local basis and transform
them to the orbital eigenbasis using U �see Fig. 1�. Since the
two orbitals can be either empty or singly occupied, the sys-
tem has four many-body states �00� , �01� , �10� , �11�. The
many-body density matrix in the full Liouville space is thus
a vector with 16 elements �4 populations and 12 coherences�.
In our reduced Liouville space it is a vector with six ele-
ments �four populations and two coherences between �01�
and �10��. The generator �17� for this model is given in Ap-
pendix E.

We have solved the GO equation �16� for the total left
current, trace the solution �28� to get the GF, and finally
calculate the probability distribution using Eq. �19�. We as-
sume that the measurement starts when the junction is at
steady state. The parameters used in the numerical simula-
tion are given in the legend of Fig. 1.

In Fig. 2�a�, we display the probability distribution of the
net number of electrons kL which have crossed the left lead-
system interface for different measurement times and for a
fixed temperature and bias. The logarithmic plot in Fig. 2�b�
highlights the tails of the distribution. Positive �negative� kL

FIG. 2. �Color online� �a� Probability distribution of the net
number of electron transfer kL through the left system-lead interface
for different measurement times. �b� The logplot highlights the be-
havior of the tails of the probability distribution. The measurement
starts when the junction is at steady state and the different symbols
correspond to different measurement times. The solid lines repre-
sent Gaussian fits. eV=0.5 and �=1.
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represent electrons which move in the direction favored �un-
favored� by the bias. As the measurement time increases, the
average of the probability distribution moves to the positive
direction linearly in time at a speed given by the steady-state
current. As expected, the longer the measurement time, the
smaller the probability of observing a current flowing against
the bias. Since the FT applies in the long time limit, this
shows that the FT quantifies the rare fluctuations described
by the tails of the probability distribution.

Figure 3�a� shows the logarithm of P�t ,kL� / P�t ,−kL� for
different measurement times. The longer the time, the closer
the results from the FT. The numerical results suggest that
for finite times

P�t,k�
P�t,− k�

� e��eV−�t�k, �38�

where limt→��t=0. This form seems to be a very good ap-
proximation for longer times where the probability to mea-
sure at least a few electron transfers becomes significant.

To calculate �t, we note that using Eq. �24�, Eq. �38�
implies that

G�t,�L� � G�t,�eV − �t − �L� . �39�

Since we do not consider very short times, Eq. �28� can be
approximated by

ln G�t,�L� � gm0
��L�t + B��L� , �40�

where m0 is the index of the eigenvalue with the smallest
absolute value and

B��L� � ln���I�gm0
��L�����g̃m0

��L����0���� . �41�

Since G�t ,0�=G�t ,�eV−�t�=1, we find that

gm0
��eV − �t�t � − B��eV − �t� . �42�

If we consider long enough times for which �t��eV and
�t / t�0, using a first �zero� order expansion of gm0

��eV
−�t� �B��eV−�t�� in �e around zero and using Eq. �D2�, we
get

�t �
B��eV�

e�I�st

1

t
. �43�

The average current can be calculated using �I�st=�s
M�Is�st

and Eq. �34�. Using B��L�=�s
MB���L,s��, where B���L,s��

=ln���I �g−���L,s������g̃−��L,s� ���0���� and ��0� correspond to
steady state, we find that

B��eV� = �
s

M

ln
�vss

�R� + w�R���wss
2 vss

�R� + vss
2 wss

�R��
vss

�R�wss
�R��wss + vss�2 . �44�

Notice that since exp	B���L,s��
�1, then �t�0 �the equality
only holds when �eV=0�.

Figure 3�b� shows that our estimate for �t is in excellent
agreement with the values obtained by linearly fitting the
results of Fig. 3�a�. It should be noted that the results pre-
sented on Figs. 2 and 3 correspond to a small bias. For larger
bias the probability of the backward processes P�−k� be-
comes very small which limits the numerical accuracy. How-

ever, the GF is still numerically accessible for high bias.
Figure 4 shows that the GF symmetry �39� on which our
method relies is not perfectly preserved for larger bias. It is
therefore expected that the accuracy of our method decreases
with increasing bias.

One can see in Fig. 2 that the probability distribution can
be reasonably well fitted by a Gaussian. Deviations can be
observed at very short times or for the tails of the distribu-
tions. The GF of a Gaussian probability distribution P�t ,k�
= �2��t

2�−1/2exp	−�k− �k�t�2 / �2�t
2�
 is given by G�t ,��

=exp	�2�t
2 /2−��k�t
. The nonzero solution of G�t ,��=1 is

�0=2�k�t /�t
2=2/F�t�, where F�t� is the time-dependent Fano

parameter associated with the net number of charge trans-
ferred through an interface. The GF has the symmetry
G�t ,��=G�t ,�0−��. Using the results of Sec. V to calculate
F���, we find that for very long measurement times

FIG. 3. �Color online� �a� The FT predicts that the logarithm of
the ratio of the probability to measure a net number of electron
transfer kL in the direction favored by the bias with the probability
of measuring the opposite number −kL �which means that a net
transfer of kL electron occurred in the direction unfavored by the
bias� is given by �eVkL. This is given by the solid black diagonal
line. Different symbols correspond to different measurement times
�the symbols not specifically labeled correspond to the same mea-
surement times as in Fig. 2�. The FT holds for long measurement
times. The solid lines are linear fits. �b� The stars represent the
values of �t obtained from the linear fit of the curves from �a� and
the dashed line is the approximation for �t given by Eq. �43�.
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�0=�eV+O�V3�. This indicates that it is only in the low bias
limit that the Gaussian approximation can be trusted for de-
scribing the tails of the probability distribution which char-
acterize the FT. This was confirmed by numerically studying
the GF. We finally notice that our estimate of �t is exact
when the Gaussian approximation is satisfied, but can also be
applied to non-Gaussian distributions as long as Eqs. �38�
and �39� hold.

The average steady-state current associated with the net
number of electrons crossing a given junction interface is
plotted as a function of the bias in Fig. 5�a�. This typical
current-voltage characteristic shows that the current in-
creases by steps each time the bias is large enough to make a
new orbital contribute to the current �when eV=�1=1.697 or
eV=�2=5.303�. The current associated with the process �
=1 and �=2 is plotted in Figs. 5�b� and 5�c�. The current in
Fig. 5�a� is given by the difference between Figs. 5�c� and
Fig. 5�b�. Temperature, when increased, has the effect of
smoothing these steps and reducing the current because ther-
mal fluctuations tend to equalize the forward and backward
currents. Ohm’s law is recovered for ���2−�1��1. The zero-
frequency power spectrum associated to the total net current
through a system interface is plotted as a function of the bias
in Fig. 5�d�. The Mandel parameter associated with the �
=1 and �=2 processes is plotted in Figs. 5�e� and 5�f�. We
see that the deviations from Poisson statistics are always
strong and tend to vanish only when the currents associated
with �=1 and �=2 vanish. This indicates that the various
types of electron transfer are highly correlated with each
other. The Mandel parameter is always negative, indicating
sub-Poissonian �antibunching� statistics. This has been ex-
perimentally observed in Ref. 46.

VII. DISCUSSION

Many different types of fluctuation theorems �FTs� have
been derived for stochastic dynamical systems. These differ

by the mechanism used to drive the system out of equilib-
rium. In the first case,2,3,9 the system is closed and driven by
a time-dependent force which makes the rate matrix of the
birth and death master equation time dependent. When the
driving stops, the system will eventually reach equilibrium
because the rate matrix is detail balanced.2 In the second
case,6,8,9,20 the system is open and the rate matrix is not detail
balanced. Even without driving, the system will eventually
reach a nonequilibrium steady state. A third class of FTs
�Refs. 56–58� considers the fluctuation of an entropy associ-
ated with the excess heat produced when time-dependent
driving induces transitions between different nonequilibrium
steady states. This paper focuses on the second case.

So far, we have assumed that the two leads of the junction
have the same temperature but different chemical potentials
	L=	0+�	 and 	R=	0. One could wonder what happens to
the FTs if one considers different temperatures for the two
leads �L=�0+��= and �R=�0. In such a case, the argument
of the exponential on the right-hand side of Eq. �5� becomes
x��0�	−����s−	0�+���	. This implies for the orbital
GF that the analog of the symmetry �27� becomes Ss���y,s��
=Ss�x−��y,s��. However, since x is different for each orbital
�due to �s�, the many-body GF, which is given by the sum of
the orbital GFs, does not possess the analog of the symmetry
�29�. It is therefore only for a single-orbital model that a FT
P�t ,k� / P�t ,−k�=exp	xk
 holds.

In summary, we have applied the quantum master equa-
tion derived in Ref. 47 for calculating the counting statistics
of electrons tunneling through a quantum junction made of a
system embedded between two leads. Using a generating
function formalism, we derived an evolution equation for the
generating operator which allows us to calculate the time-
dependent probability distribution of electron transfer events.
This equation can be solved analytically because the many-
body generating operator is a product of single-orbital gen-
erating operators. We then demonstrated that the net number
of electrons crossing a given system-lead interface satisfies a
FT at long times. This implies that measuring a net number
of electron transfers in the direction favored by the bias is
exponentially more probable than measuring it in the oppo-
site direction. Since the argument in the exponential is the
work needed to transfer the measured electrons through the
junction, this fluctuation theorem can be viewed as a Crooks
relation.2,3 We furthermore described how the moments of
the current distribution can be deduced from the electron
counting statistics and gave analytical expressions for cur-
rents and power spectra. Numerical calculations of the prob-
ability distribution for the electron counts for a model of two
coupled quantum dots demonstrated that the FT becomes
valid for long measurement times. Finite-time deviations
were estimated.

Several future extensions of this work are called for. The
first is to find if electron-electron interactions affect the FT.
Another problem is to investigate if the FT still holds in a
system where the population dynamics couple to the coher-
ence dynamics �e.g., a quantum junction externally driven by
a laser�. In analogy to the excess heat,57 one could also con-
sider fluctuations of excess currents, produced during transi-
tion between steady states.

FIG. 4. �Color online� Generating function calculated for differ-
ent values of the bias and at measurement times tm such that �tm
=0.1�eV. tm is calculated by solving G�tm ,0.9�eV�=1. The solid
line is G�tm ,�L� and the dotted line is G�tm ,0.9�eV−�L�. The dif-
ference between the two curves is a measure of the breakdown of
the symmetry �39�.
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APPENDIX A: TRAJECTORY PICTURE
FOR THE QME DYNAMICS

Using the interaction representation, we can recast Eq. �6�
as

���̇I�t��� = �̂�t����I�t��� , �A1�
where

���I�t��� � Û0�0,t�����t��� �A2�
and

�̂�t� = Û0�0,t��̂Û0�t,0� , �A3�

where Û0�0, t��exp�−M̂0t�. M̂0= L̂+ 
̂ describes the sys-
tem dynamics in absence of electron transfer. The formal
solution of Eq. �A1� reads

FIG. 5. �Color online� �a� Average steady-state net current �I�st. The bias is at resonance with the dot levels for eV=�1=1.697 and eV
=�2=5.303. �b� Average current due to the electron exiting the dots from the left side of the junction �processes �=1 on Fig. 1�. �c� Average
current due to the electron entering the dots from the left side of the junction �processes �=2 on Fig. 1�. �d� Zero-frequency power spectrum
of the steady-state net current �A1+A2 using Eq. �35��. �e� Mandel parameter associated to the process �=1. �f� Mandel parameter associated
to the process �=2. All plots are functions of the bias and are given for five different temperatures.
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���I�t��� = exp+�
0

t

d��̂�������I�0��� = �
k=0

�

���I
�k��t��� ,

�A4�

where

���I
�k��t��� = 

0

t

d�k
0

�k

d�k−1 ¯ 
0

�2

d�1�̂��k��̂��k−1� ¯

��̂��1����I�0��� = 
0

t

d��̂������I
�k−1������ . �A5�

Multiplying Eq. �A5� by Û0�t ,0�, we get

����k��t��� = 
0

t

d�k
0

�k

d�k−1 ¯ 
0

�2

d�1Û0�t,�k�

��̂Û0��k,�k−1��̂ ¯ Û0��2,�1��̂Û0��1,0�����0��� .

�A6�

This is the density matrix conditional to the transfer of k
electrons between the system and the leads, irrespective of
the type of transfer � or orbital s.

We shall denote the number of electron transfers of type �
through the s orbital by k� where �= �� ,s�. The number of
electron transfers of type � disregarding the orbital is k�

=�s=1
M k��,s� and the number of electron transfer through the

orbital s disregarding the type of transfer is ks=��=1
4 k��,s�. We

have that k=��k�. We define

k = k�1,1�,k�1,2�, . . . ,k�1,M�,k�2,1�,k�2,2�, . . . ,k�2,M�, . . . ,k�4,1�,

k�4,2�, . . . ,k�4,M�,

ks = k�1,s�,k�2,s�,k�3,s�,k�4,s�,

k� = k��,1�,k��,2�, . . . ,k��,M�. �A7�

A trajectory �� , t���� records �from left to right� the sequence
of electron transfer events during a time �, by labeling them
according to the type of transfer, the relevant orbital and
the time at which a given transfer occurs �� , t����
= ��1 , t1� , ��2 , t2� , . . . , ��k , tk�. A sequence ������ is a trajectory
where the transfer time is not recorded ������=�1 ,�2 , . . . ,�k.

We can now decompose �I�t� as

���I�t��� = �
k

���I
�k��t��� , �A8�

where the sum is over all the component k� of k and runs
from zero to infinity. Using Eq. �12�, the probability to mea-
sure k electrons transferred to the leads at time t is given by

P�t,k� = ��I�Û0�t,0���I
�k��t��� . �A9�

The master equation �6� preserves the trace so that the nor-
malization condition �kP�t ,k�=1 is satisfied.

We next define the elementary probability density of a
given trajectory �� ,���t� which contains k electron transfer
events at time �1 , . . . ,�k during a time interval t as

����,���t�� � ��Tr�Û0�t,0��̂�k
��k�

��̂�k−1
��k−1� . . . �̂�1

��1���I�0��� . �A10�

The probability of a sequence ����t� with k events is obtained
by time integrating Eq. �A10�,

������t�� = 
0

t

d�k
0

�k

d�k−1 . . . 
0

�2

d�1����,���t�� .

�A11�

Using Eq. �A6�, and since our equation conserves the trace,
we see that �����t�

������t��=1, where �����t�
is the sum over all

possible electron transfer sequences �without keeping track
of transfer times�. The trace of Eq. �A5� can now be written
using Eqs. �A10� and �A11� as

P�t,k� = �
����t��k

������t�� , �A12�

where the summation is restricted to sequences such that the
number of transfer events is k.

Because a number k of electrons at time t can be realized
by the four types of electron transfer processes �Fig. 1� and
via M different orbitals, we have

���I
�k��t��� = �

�


0

t

d��̂�������I
�k−1������� , �A13�

where 1�=0, . . . ,0 ,1 ,0 , . . . ,0, where 1 is at the position � in
the sequence.

Using the interaction picture of the GO, we can rewrite
Eq. �A13� as

��GI�t,���� = 
0

t

d���
�

e���̂�������GI��,���� . �A14�

By taking the time derivative and going back to the
Schrödinger picture, we get Eq. �16�.

APPENDIX B: SOLUTION OF THE GF

The generator of Eq. �16� can be written as a sum of
contributions of each orbital

Ŵ��� = �
s=1

M

Ŵs��s� , �B1�

where

Ŵs��s� = L̂s + 
̂s + �
�=1

4

e���,s��̂��,s� �B2�

and L̂s�−i�s�cs
†cs , · �. The GO can therefore be factorized as

a tensor product of orbital GO,

��G�t,���� = �
s=1

M

��Gs�t,�s��� � , �B3�

which evolve independently according to
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��Ġs�t,�s��� = Ŵs��s���Gs�t,�s��� . �B4�

Projecting Eq. �B4� into the system eigenbasis and using the
notation

��n1 ¯ nM ;n1� ¯ nM� �G�t,���� = �
s=1

M

��ns;ns��Gs�t,�s���

= �
s=1

M

Gns;ns�
�t,�s� , �B5�

we get

�
Ġ1;1�t,�s�

Ġ0;0�t,�s�

Ġ1;0�t,�s�

Ġ0;1�t,�s�
� = Ŵ��s��

G1;1�t,�s�
G0;0�t,�s�
G1;0�t,�s�
G0;1�t,�s�

� , �B6�

where

Ŵ��s� = 2�
− vss e��2,s�wss

�L� + e��4,s�wss
�R� 0 0

e��1,s�vss
�L� + e��3,s�vss

�R� − wss 0 0

0 0 − i�s − vss − wss 0

0 0 0 i�s − vss − wss

� . �B7�

Since we work in the reduced Liouville space �where FSCs
are neglected�, only the coherences such that �s=1

M ns
=�s=1

M ns� are kept in Eq. �B5�.
The two eigenvalues of the generator �B7� corresponding

to the population dynamics are given by

g±��s� = − �vss + wss

2
� ±��vss + wss

2
�2

+ f��s� , �B8�

where

f��s� = vss
�L�	�e���1,s�+��2,s�� − 1�wss

�L� + �e���1,s�+��4,s�� − 1�wss
�R�


+ vss
�R�	�e���2,s�+��3,s�� − 1�wss

�L� + �e���3,s�+��4,s�� − 1�wss
�R�
 .

The two eigenvalues corresponding to coherences are
obviously given by the two lower diagonal elements of Eq.
�B7� since the populations are decoupled from coherences.
The right �left� eigenvectors of the generator can be
easily evaluated. The two associated to the population

read Ŵs��s��g±��s���=g±��s��g±��s��� ���g̃±��s��Ŵs��s�
= ��g̃±��s��g±��s��. By tracing the solution of Eq. �B6� we get
the orbital GF,

Gs�t,�s� = c+�0�eg+��s�t�g1;1
+ ��s� + g0;0

+ ��s��

+ c−�0�eg−��s�t�g1;1
− ��s� + g0;0

− ��s�� , �B9�

where gns;ns

± ��s�= ��ns ;ns �g±��s��� and c±�0�
= ��g̃±��s� �Gs�0,�s���. The many-body GF �18� is given by

G�t,�� = �
s=1

M

Gs�t,�s� . �B10�

This constitutes the solution of Eq. �16�. If one does the
spectral decomposition directly on the many-body generator
one gets

G�t,�� = �
m

2M

egm���t��I�gm�������g̃m������0��� , �B11�

where gm���, �gm����� and ��g̃m���� are, respectively, the
many-body eigenvalues, right, and left eigenvector of the
generator. Each of these many-body eigenvalue is made from
one of the 2M possible ways of summing the orbital eigen-
values �B8� and the many-body left and right eigenvectors
are tensor products of the single-orbital eigenvectors.

APPENDIX C: FLUCTUATION THEOREM DERIVED
FROM THE GENERATING FUNCTION SYMMETRY

The following reasoning is based on the steady state FT
for the entropy first obtained6,8 and later extended for
currents.54,55 The GF is associated with the probability dis-
tribution by

G�t,�� = �
k

P�t,k�e−�k = d�P̃�t,��e−��t, �C1�

where we have introduced P̃�t ,��, the probability that �
=k / t takes a value in the interval �� ,�+d��. The large devia-
tion function �LDF� is defined as

R��� � − lim
t→�

1

t
ln P̃�t,�� . �C2�

This definition follows from the ansatz

P̃�t,�� = C��,t�e−R���t, �C3�

where
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lim
t→�

1

t
ln C��,t� = 0. �C4�

We can then rewrite Eq. �C1� as

G�t,�� = d�C��,t�e−�R���+���t. �C5�

At long times, the main contribution to this integral comes
from the value of �, �*, that maximizes the argument of the
exponential. �* is therefore the value of � such that �

=− dR
d� ��=�*. At long times, using steepest descent integration,

Eq. �C5� becomes

G�t,�� � e−�R��*�+��*�t d�C��,t�e−�1/2��„d2R���/d�2
…��=�*��� − �*�2t

� e−�R��*�+��*�tC��*,t����d2R���
d�2 �

�=�*
� t

2��
−1/2

.

�C6�

Substituting Eq. �C6� in Eq. �21� gives

S��� = R��*� + ��*. �C7�

This shows that S��� is the Legendre transform of the LDF.
The LDF is given by the inverse Legendre transform of S���,

R��� = S��*� − �*� , �C8�

where �= dS
d� ��=�*. Since S��� is convex downward �i.e.,

d2S /d�2=−limt→���k2�t− �k�t
2��0�, its Legendre transform is

convex upwards. Using the symmetry �29�, Eq. �C8� implies
that R�−��=S��eV−��+ ��eV−���, which together with
R���=S���−�� leads to

R��� − R�− �� = − �eV� . �C9�

Substituting this in Eq. �C3�, we get

ln
P̃�t,��

P̃�t,− ��
= �eV�t + ln

C��,t�
C�− �,t�

. �C10�

Using Eq. �C4�, this gives the FT �30� in the long time limit.

APPENDIX D: CURRENT, POWER SPECTRUM, AND THE
GENERATING FUNCTION

We show how to calculate the average currents, their
zero-frequency power spectra, and their Mandel parameter
from the GF. These results are used in Sec. V.

To simplify the notation, we assume we have a probability
distribution P�t ,k� and its associated generating function
G�t ,��=�kP�t ,k�e�·k, where the component of k and �
are given by k� and ��. We also have S���
=−limt→�

1
t ln G�t ,��. The averaged number of charge � is

given by

�k��t = −
1

e�0

t

d��I����� =
�

���

G�t,���
�=0

, �D1�

and the steady-state current by

�I��st = lim
t→�

1

t �0

t

d��I����� = e
�

���

S����
�=0

. �D2�

We also find that

�k�k���t = � �

���

�

����
G�t,���

�=0

=
1

e2
0

t

d�1
0

t

d�2�I���1�I����2�� . �D3�

Since at steady state �I���1�I����2��st= �I���1−�2�I���0��st,
�I���1��st= �I��st, and �I����2��st= �I���st, using the fact that

� �

���

�

����
ln G�t,���

�=0

= �k�k���t − �k��t�k���t, �D4�

we find

A��� = e2� �

���

�

����
S����

�=0

= 
−�

�

d���I����I���0��st − �I��st�I���st�

= 
−�

�

d���I���� − �I��st��I���0� − �I���st��st. �D5�

Since the Fourier transform of the current correlation func-
tion is given by

A������ = 
−�

�

d�e−i����I���� − �I��st��I���0� − �I���st��st,

�D6�

we see that A��� in Eq. �D5� is the zero-frequency power
spectrum of the current correlation function A���=A�����
=0�. This quantity is used to study shot noise.32

The analog of the Mandel parameter in photon counting
statistic28,29 for the process y is given by

M��t� �
��k�

2�t − �k��t
2� − �k��t

�k��t
=

��2/���
2�ln G�t,����=0

��/����G�t,����=0
− 1.

�D7�

The asymptotic value is given by

M���� =
��2/���

2�S�����=0

��/����S�����=0
− 1. �D8�

For a Poisson process M�=0. The zero-frequency power
spectrum is related to the long time limit of the Mandel
parameter by

A�� = e�I��st�1 + M����� . �D9�

APPENDIX E: GENERATOR FOR THE TWO QUANTUM
DOT MODEL

We present the basic quantities needed in the reduced
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Liouville space to study the model of two quantum dot
model presented in Sec. IV. The orbital eigenbasis is denoted
by 	�n1 ,n2�
, where n1 �n2� is the occupation number of the
orbital s=1 �s=2�. Using the notation �n1 ,n2 �� �n1� ,n2��

=�n1n2;n1�n2�
, the density matrix in the reduced Liouville space

is given by the vector �= ��00;00 ,�01;01 ,�10;10 ,�11;11 ,
�10;01 ,�01;10�T. The generator of our QME �1� for this model
in this basis reads

M̂ =�
− 2�w11 + w22� 2v22 2v11 0 0 0

2w22 − 2�v22 + w11� 0 2v11 0 0

2w11 0 − 2�v11 + w22� 2v22 0 0

0 2w11 2w22 − 2�v11 + v22� 0 0

0 0 0 0 − X 0

0 0 0 0 0 − X*,

� , �E1�

where X=v11+w11+v22+w22+ i��1−�2�. As expected, the populations are decoupled from the coherences. The generator is
diagonal for the coherences and obeys a birth and death master equation in the population space. The generator for the GO
evolution equation �16� is given by

Ŵ���=�
− 2�w11 + w22� 2�e��1,2�v22

�L� + e��3,2�v22
�R�� 2�e��1,1�v11

�L� + e��3,1�v11
�R�� 0

2�e��2,2�w22
�L� + e��4,2�w22

�R�� − 2�v22 + w11� 0 2�e��1,1�v11
�L� + e��3,1�v11

�R��
2�e��2,1�w11

�L� + e��4,1�w11
�R�� 0 − 2�v11 + w22� 2�e��1,2�v22

�L� + e��3,2�v22
�L��

0 2�e��2,1�w11
�L� + e��4,1�w11

�R�� 2�e��2,2�w22
�L� + e��4,2�w22

�L�� − 2�v11 + v22�
� ,

where the coherence part has been discarded since it is the same as for the generator of the QME.

*Also at Center for Nonlinear Phenomena and Complex Systems,
Universite Libre de Bruxelles, Code Postal 231, Campus Plaine,
B-1050 Brussels, Belgium.

1 C. Jarzynski, Phys. Rev. Lett. 78, 2690 �1997�; Phys. Rev. E 56,
5018 �1997�.

2 G. E. Crooks, Phys. Rev. E 60, 2721 �1999�.
3 G. E. Crooks, Phys. Rev. E 61, 2361 �2000�.
4 G. Gallavotti and E. G. D. Cohen, Phys. Rev. Lett. 74, 2694

�1995�.
5 J. Kurchan, J. Phys. A 31, 3719 �1998�.
6 J. L. Lebowitz and H. Spohn, J. Stat. Phys. 95, 333 �1999�.
7 D. J. Searles and D. J. Evans, Phys. Rev. E 60, 159 �1999�.
8 P. Gaspard, J. Chem. Phys. 120, 8898 �2004�.
9 U. Seifert, Phys. Rev. Lett. 95, 040602 �2005�.

10 B. Cleuren, C. Van den Broeck, and R. Kawai, Phys. Rev. E 74,
021117 �2006�.

11 C. Maes, Séminaire Poincaré 2, 29 �2003�.
12 P. Gaspard, Physica A 369, 201 �2006�.
13 C. Bustamante, J. Liphardt, and F. Ritort, Phys. Today 58�7�, 43

�2005�.
14 D. Collin, F. Ritort, C. Jarzynski, S. B. Smith, I. Tinoco, Jr., and

C. Bustamante, Nature �London� 437, 231 �2005�.
15 S. Mukamel, Phys. Rev. Lett. 90, 170604 �2003�.
16 T. Monnai and S. Tasaki, cond-mat/0308337 �unpublished�.
17 W. De Roeck and C. Maes, Phys. Rev. E 69, 026115 �2004�.
18 T. Monnai, Phys. Rev. E 72, 027102 �2005�.
19 A. E. Allahverdyan and Th. M. Nieuwenhuizen, Phys. Rev. E 71,

066102 �2005�.

20 W. De Roeck and C. Maes, Rev. Math. Phys. 18, 619 �2006�.
21 M. Esposito and S. Mukamel, Phys. Rev. E 73, 046129 �2006�.
22 R. J. Glauber, Phys. Rev. 131, 2766 �1963�.
23 P. L. Kelley and W. H. Kleiner, Phys. Rev. 136, A316 �1964�.
24 L. Mandel, Phys. Rev. Lett. 49, 136 �1982�.
25 Y. Zheng and F. L. H. Brown, Phys. Rev. Lett. 90, 238305

�2003�; J. Chem. Phys. 119, 11814 �2003�.
26 S. Mukamel, Phys. Rev. A 68, 063821 �2003�.
27 F. Sanda and S. Mukamel, Phys. Rev. A 71, 033807 �2005�.
28 F. Sanda and S. Mukamel, J. Chem. Phys. 124, 124103 �2006�.
29 E. Barkai, Y. Jung, and R. Silbey, Annu. Rev. Phys. Chem. 55,

457 �2004�.
30 F. Kulzer and M. Orrit, Annu. Rev. Phys. Chem. 55, 585 �2004�.
31 L. S. Levitov and M. Reznikov, Phys. Rev. B 70, 115305 �2004�;

L. S. Levitov and M. Reznikov, cond-mat/0111057 �unpub-
lished�.

32 Y. M. Blanter and M. Buttiker, Phys. Rep. 336, 1 �2000�.
33 S. A. Gurvitz, Phys. Rev. B 56, 15215 �1997�.
34 J. Wabnig, D. V. Khomitsky, J. Rammer, and A. L. Shelankov,

Phys. Rev. B 72, 165347 �2005�.
35 J. Rammer, A. L. Shelankov, and J. Wabnig, Phys. Rev. B 70,

115327 �2004�.
36 A. L. Shelankov and J. Rammer, Europhys. Lett. 63, 485 �2003�.
37 C. Flindt, T. Novotny, and A.-P. Jauho, Europhys. Lett. 69, 475

�2005�.
38 G. Kiesslich, P. Samuelsson, A. Wacker, and E. Schöll, Phys. Rev.

B 73, 033312 �2006�.

ESPOSITO, HARBOLA, AND MUKAMEL PHYSICAL REVIEW B 75, 155316 �2007�

155316-12



39 Y. Utsumi, D. S. Golubev, and G. Schön, Phys. Rev. Lett. 96,
086803 �2006�.

40 J. N. Pedersen and A. Wacker, Phys. Rev. B 72, 195330 �2005�.
41 D. A. Bagrets and Yu. V. Nazarov, Phys. Rev. B 67, 085316

�2003�.
42 W. Lu, Z. Ji, L. Pfeiffer, K. W. West, and A. J. Rimberg, Nature

�London� 423, 422 �2003�.
43 T. Fujisawa, T. Hayashi, Y. Hirayama, and H. D. Cheong, Appl.

Phys. Lett. 84, 2343 �2004�.
44 J. Bylander, T. Duty, and P. Delsing, Nature �London� 434, 361

�2005�.
45 S. Gustavsson, R. Leturcq, B. Simovic, R. Schleser, T. Ihn, P.

Studerus, K. Ensslin, D. C. Driscoll, and A. C. Gossard, Phys.
Rev. Lett. 96, 076605 �2006�.

46 T. Fujisawa, T. Hayashi, R. Tomita, and Y. Hirayama, Science
312, 1634 �2006�.

47 U. Harbola, M. Esposito, and S. Mukamel, Phys. Rev. B 74,
235309 �2006�.

48 H.-P. Breuer and F. Petruccione, The Theory of Open Quantum

Systems �Oxford University Press, Oxford, 2002�.
49 C. W. Gardiner and P. Zoller, Quantum Noise �Springer, Berlin,

2000�.
50 F. Haake, Statistical Treatment of Open Systems, Springer Tracts

in Modern Physics, Vol. 66 �1973�.
51 H. Spohn, Rev. Mod. Phys. 53, 569 �1980�.
52 C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-

Photon interactions: Basics Processes and Applications �John
Wiley and Sons, Inc., New York, 1992�.

53 D. Andrieux and P. Gaspard, J. Stat. Mech.: Theory Exp. �2006�,
P01011.

54 D. Andrieux and P. Gaspard, J. Chem. Phys. 121, 6167 �2004�.
55 D. Andrieux and P. Gaspard, cond-mat/0512254 �unpublished�.
56 T. Hatano, Phys. Rev. E 60, R5017 �1999�.
57 T. Hatano and S. I. Sasa, Phys. Rev. Lett. 86, 3463 �2001�.
58 E. H. Trepagnier, C. Jarzynski, F. Ritort, G. E. Crooks, C. J.

Bustamante, and J. Liphardt, Proc. Natl. Acad. Sci. U.S.A. 101,
15038 �2004�.

FLUCTUATION THEOREM FOR COUNTING STATISTICS… PHYSICAL REVIEW B 75, 155316 �2007�

155316-13


