26 research outputs found

    Image quality of list-mode proton imaging without front trackers

    Get PDF
    List mode proton imaging relies on accurate reconstruction of the proton most likely path (MLP) through the patient. This typically requires two sets of position sensitive detector systems, one upstream (front) and one downstream (rear) of the patient. However, for a clinical implementation it can be preferable to omit the front trackers (single-sided proton imaging). For such a system, the MLP can be computed from information available through the beam delivery system and the remaining rear tracker set. In this work, we use Monte Carlo simulations to compare a conventional double-sided (using both front and rear detector systems) with a single-sided system (only rear detector system) by evaluating the spatial resolution of proton radiographs (pRad) and proton CT images (pCT) acquired with these set-ups. Both the pencil beam spot size, as well as the spacing between spots was also adjusted to identify the impact of these beam parameters on the image quality. Relying only on the pencil beam central position for computing the MLP resulted in severe image artifacts both in pRad and pCT. Using the recently extended-MLP formalism that incorporate pencil beam uncertainty removed these image artifacts. However, using a more focused pencil beam with this algorithm induced image artifacts when the spot spacing was the same as the beam spot size. The spatial resolution tested with a sharp edge gradient technique was reduced by 40% for single-sided (MTF10% = 3.0 lp/cm) compared to double-sided (MTF10% = 4.9 lp/cm) pRad with ideal tracking detectors. Using realistic trackers the difference decreased to 30%, with MTF10% of 4.0 lp/cm for the realistic double-sided and 2.7 lp/cm for the realistic single-sided setup. When studying an anthropomorphic paediatric head phantom both single- and double-sided set-ups performed similarly where the difference in water equivalent thickness (WET) between the two set-ups were less than 0.01 mm in homogeneous areas of the head. Larger discrepancies between the two set-ups were visible in high density gradients like the facial structures. A complete CT reconstruction of a Catphan¼^{\circledR} module was performed. Assuming ideal detectors, the obtained spatial resolution was 5.1 lp/cm for double-sided and 3.8 lp/cm for the single-sided setup. Double- and single-sided pRad with realistic tracker properties returned a spatial resolution of 3.8 lp/cm and 3.2 lp/cm, respectively. Future studies should investigate the development of dedicated reconstruction algorithms targeted for single-sided particle imaging.publishedVersio

    Uncertainty-aware spot rejection rate as quality metric for proton therapy using a digital tracking calorimeter

    Get PDF
    Objective. Proton therapy is highly sensitive to range uncertainties due to the nature of the dose deposition of charged particles. To ensure treatment quality, range verification methods can be used to verify that the individual spots in a pencil beam scanning treatment fraction match the treatment plan. This study introduces a novel metric for proton therapy quality control based on uncertainties in range verification of individual spots. Approach. We employ uncertainty-aware deep neural networks to predict the Bragg peak depth in an anthropomorphic phantom based on secondary charged particle detection in a silicon pixel telescope designed for proton computed tomography. The subsequently predicted Bragg peak positions, along with their uncertainties, are compared to the treatment plan, rejecting spots which are predicted to be outside the 95% confidence interval. The such-produced spot rejection rate presents a metric for the quality of the treatment fraction. Main results. The introduced spot rejection rate metric is shown to be well-defined for range predictors with well-calibrated uncertainties. Using this method, treatment errors in the form of lateral shifts can be detected down to 1 mm after around 1400 treated spots with spot intensities of 1 × 107 protons. The range verification model used in this metric predicts the Bragg peak depth to a mean absolute error of 1.107 ± 0.015 mm. Significance. Uncertainty-aware machine learning has potential applications in proton therapy quality control. This work presents the foundation for future developments in this area.publishedVersio

    Uncertainty-aware spot rejection rate as quality metric for proton therapy using a digital tracking calorimeter

    Get PDF
    Objective. Proton therapy is highly sensitive to range uncertainties due to the nature of the dose deposition of charged particles. To ensure treatment quality, range verification methods can be used to verify that the individual spots in a pencil beam scanning treatment fraction match the treatment plan. This study introduces a novel metric for proton therapy quality control based on uncertainties in range verification of individual spots. Approach. We employ uncertainty-aware deep neural networks to predict the Bragg peak depth in an anthropomorphic phantom based on secondary charged particle detection in a silicon pixel telescope designed for proton computed tomography. The subsequently predicted Bragg peak positions, along with their uncertainties, are compared to the treatment plan, rejecting spots which are predicted to be outside the 95% confidence interval. The such-produced spot rejection rate presents a metric for the quality of the treatment fraction. Main results. The introduced spot rejection rate metric is shown to be well-defined for range predictors with well-calibrated uncertainties. Using this method, treatment errors in the form of lateral shifts can be detected down to 1 mm after around 1400 treated spots with spot intensities of 1 × 107 protons. The range verification model used in this metric predicts the Bragg peak depth to a mean absolute error of 1.107 ± 0.015 mm. Significance. Uncertainty-aware machine learning has potential applications in proton therapy quality control. This work presents the foundation for future developments in this area

    Exploration of differentiability in a proton computed tomography simulation framework

    Get PDF
    Objective. Gradient-based optimization using algorithmic derivatives can be a useful technique to improve engineering designs with respect to a computer-implemented objective function. Likewise, uncertainty quantification through computer simulations can be carried out by means of derivatives of the computer simulation. However, the effectiveness of these techniques depends on how ‘well-linearizable’ the software is. In this study, we assess how promising derivative information of a typical proton computed tomography (pCT) scan computer simulation is for the aforementioned applications. Approach. This study is mainly based on numerical experiments, in which we repeatedly evaluate three representative computational steps with perturbed input values. We support our observations with a review of the algorithmic steps and arithmetic operations performed by the software, using debugging techniques. Main results. The model-based iterative reconstruction (MBIR) subprocedure (at the end of the software pipeline) and the Monte Carlo (MC) simulation (at the beginning) were piecewise differentiable. However, the observed high density and magnitude of jumps was likely to preclude most meaningful uses of the derivatives. Jumps in the MBIR function arose from the discrete computation of the set of voxels intersected by a proton path, and could be reduced in magnitude by a ‘fuzzy voxels’ approach. The investigated jumps in the MC function arose from local changes in the control flow that affected the amount of consumed random numbers. The tracking algorithm solves an inherently non-differentiable problem. Significance. Besides the technical challenges of merely applying AD to existing software projects, the MC and MBIR codes must be adapted to compute smoother functions. For the MBIR code, we presented one possible approach for this while for the MC code, this will be subject to further research. For the tracking subprocedure, further research on surrogate models is necessary

    Image quality of list-mode proton imaging without front trackers

    Get PDF
    List mode proton imaging relies on accurate reconstruction of the proton most likely path (MLP) through the patient. This typically requires two sets of position sensitive detector systems, one upstream (front) and one downstream (rear) of the patient. However, for a clinical implementation it can be preferable to omit the front trackers (single-sided proton imaging). For such a system, the MLP can be computed from information available through the beam delivery system and the remaining rear tracker set. In this work, we use Monte Carlo simulations to compare a conventional double-sided (using both front and rear detector systems) with a single-sided system (only rear detector system) by evaluating the spatial resolution of proton radiographs (pRad) and proton CT images (pCT) acquired with these set-ups. Both the pencil beam spot size, as well as the spacing between spots was also adjusted to identify the impact of these beam parameters on the image quality. Relying only on the pencil beam central position for computing the MLP resulted in severe image artifacts both in pRad and pCT. Using the recently extended-MLP formalism that incorporate pencil beam uncertainty removed these image artifacts. However, using a more focused pencil beam with this algorithm induced image artifacts when the spot spacing was the same as the beam spot size. The spatial resolution tested with a sharp edge gradient technique was reduced by 40% for single-sided (MTF10% = 3.0 lp/cm) compared to double-sided (MTF10% = 4.9 lp/cm) pRad with ideal tracking detectors. Using realistic trackers the difference decreased to 30%, with MTF10% of 4.0 lp/cm for the realistic double-sided and 2.7 lp/cm for the realistic single-sided setup. When studying an anthropomorphic paediatric head phantom both single- and double-sided set-ups performed similarly where the difference in water equivalent thickness (WET) between the two set-ups were less than 0.01 mm in homogeneous areas of the head. Larger discrepancies between the two set-ups were visible in high density gradients like the facial structures. A complete CT reconstruction of a CatphanÂź module was performed. Assuming ideal detectors, the obtained spatial resolution was 5.1 lp/cm for double-sided and 3.8 lp/cm for the single-sided setup. Double- and single-sided pRad with realistic tracker properties returned a spatial resolution of 3.8 lp/cm and 3.2 lp/cm, respectively. Future studies should investigate the development of dedicated reconstruction algorithms targeted for single-sided particle imaging

    Image quality of list-mode proton imaging without front trackers

    No full text
    List mode proton imaging relies on accurate reconstruction of the proton most likely path (MLP) through the patient. This typically requires two sets of position sensitive detector systems, one upstream (front) and one downstream (rear) of the patient. However, for a clinical implementation it can be preferable to omit the front trackers (single-sided proton imaging). For such a system, the MLP can be computed from information available through the beam delivery system and the remaining rear tracker set. In this work, we use Monte Carlo simulations to compare a conventional double-sided (using both front and rear detector systems) with a single-sided system (only rear detector system) by evaluating the spatial resolution of proton radiographs (pRad) and proton CT images (pCT) acquired with these set-ups. Both the pencil beam spot size, as well as the spacing between spots was also adjusted to identify the impact of these beam parameters on the image quality. Relying only on the pencil beam central position for computing the MLP resulted in severe image artifacts both in pRad and pCT. Using the recently extended-MLP formalism that incorporate pencil beam uncertainty removed these image artifacts. However, using a more focused pencil beam with this algorithm induced image artifacts when the spot spacing was the same as the beam spot size. The spatial resolution tested with a sharp edge gradient technique was reduced by 40% for single-sided (MTF10% = 3.0 lp/cm) compared to double-sided (MTF10% = 4.9 lp/cm) pRad with ideal tracking detectors. Using realistic trackers the difference decreased to 30%, with MTF10% of 4.0 lp/cm for the realistic double-sided and 2.7 lp/cm for the realistic single-sided setup. When studying an anthropomorphic paediatric head phantom both single- and double-sided set-ups performed similarly where the difference in water equivalent thickness (WET) between the two set-ups were less than 0.01 mm in homogeneous areas of the head. Larger discrepancies between the two set-ups were visible in high density gradients like the facial structures. A complete CT reconstruction of a Catphan¼^{\circledR} module was performed. Assuming ideal detectors, the obtained spatial resolution was 5.1 lp/cm for double-sided and 3.8 lp/cm for the single-sided setup. Double- and single-sided pRad with realistic tracker properties returned a spatial resolution of 3.8 lp/cm and 3.2 lp/cm, respectively. Future studies should investigate the development of dedicated reconstruction algorithms targeted for single-sided particle imaging

    Estimated risk of radiation-induced cancer following paediatric cranio-spinal irradiation with electron, photon and proton therapy

    No full text
    <div><p></p><p><b>Background.</b> Improvement in radiotherapy during the past decades has made the risk of developing a radiation-induced secondary cancer as a result of dose to normal tissue a highly relevant survivorship issue. Important factors expected to influence secondary cancer risk include dose level and dose heterogeneity, as well as gender and type of tissue irradiated. The elevated radio-sensitivity in children calls for models particularly tailored to paediatric cancer patients.</p><p><b>Material and methods.</b> Treatment plans of six paediatric medulloblastoma patients were analysed with respect to secondary cancer risk following cranio-spinal irradiation (CSI), using either: 1) electrons and photons combined; 2) conformal photons; 3) double-scattering (DS) protons; or 4) intensity-modulated proton therapy (IMPT). The relative organ equivalent dose (OED) concept was applied in three dose-risk scenarios: a linear response model, a plateau response and an organ specific linear-exponential response. Life attributable risk (LAR) was calculated based on the BEIR VII committee's preferred models for estimating age- and site-specific solid cancer incidence. Uncertainties in the model input parameters were evaluated by error propagation using a Monte Carlo sampling procedure.</p><p><b>Results.</b> Both DS protons and IMPT achieved a significantly better dose conformity compared to the photon and electron irradiation techniques resulting in a six times lower overall risk of radiation-induced cancer. Secondary cancer risk in the thyroid and lungs contributed most to the overall risk in all compared modalities, while no significant difference was observed for the bones. Variations between DS protons and IMPT were small, as were differences between electrons and photons.</p><p><b>Conclusion.</b> Regardless of technique, using protons decreases the estimated risk of secondary cancer following paediatric CSI compared to conventional photon and electron techniques. Substantial uncertainties in the LAR estimates support relative risk comparisons by OED.</p></div
    corecore