358 research outputs found

    Automated Refactoring of Nested-IF Formulae in Spreadsheets

    Full text link
    Spreadsheets are the most popular end-user programming software, where formulae act like programs and also have smells. One well recognized common smell of spreadsheet formulae is nest-IF expressions, which have low readability and high cognitive cost for users, and are error-prone during reuse or maintenance. However, end users usually lack essential programming language knowledge and skills to tackle or even realize the problem. The previous research work has made very initial attempts in this aspect, while no effective and automated approach is currently available. This paper firstly proposes an AST-based automated approach to systematically refactoring nest-IF formulae. The general idea is two-fold. First, we detect and remove logic redundancy on the AST. Second, we identify higher-level semantics that have been fragmented and scattered, and reassemble the syntax using concise built-in functions. A comprehensive evaluation has been conducted against a real-world spreadsheet corpus, which is collected in a leading IT company for research purpose. The results with over 68,000 spreadsheets with 27 million nest-IF formulae reveal that our approach is able to relieve the smell of over 99\% of nest-IF formulae. Over 50% of the refactorings have reduced nesting levels of the nest-IFs by more than a half. In addition, a survey involving 49 participants indicates that for most cases the participants prefer the refactored formulae, and agree on that such automated refactoring approach is necessary and helpful

    Assessment of Features between Multichannel Electrohysterogram for Differentiation of Labors

    Full text link
    [EN] Electrohysterogram (EHG) is a promising method for noninvasive monitoring of uterine electrical activity. The main purpose of this study was to characterize the multichannel EHG signals to distinguish between term delivery and preterm birth, as well as deliveries within and beyond 24 h. A total of 219 pregnant women were grouped in two ways: (1) term delivery (TD), threatened preterm labor (TPL) with the outcome of preterm birth (TPL_PB), and TPL with the outcome of term delivery (TPL_TD); (2) EHG recording time to delivery (TTD) 24 h. Three bipolar EHG signals were analyzed for the 30 min recording. Six EHG features between multiple channels, including multivariate sample entropy, mutual information, correlation coefficient, coherence, direct partial Granger causality, and direct transfer entropy, were extracted to characterize the coupling and information flow between channels. Significant differences were found for these six features between TPL and TD, and between TTD 24 h. No significant difference was found between TPL_PB and TPL_TD. The results indicated that EHG signals of TD were more regular and synchronized than TPL, and stronger coupling between multichannel EHG signals was exhibited as delivery approaches. In addition, EHG signals propagate downward for the majority of pregnant women regardless of different labors. In conclusion, the coupling and propagation features extracted from multichannel EHG signals could be used to differentiate term delivery and preterm birth and may predict delivery within and beyond 24 h.This research was funded by the National Key R&D Program, grant number 2019YFC0119700, and the National Natural Science Foundation of China, grant number U20A20388.Zhang, Y.; Hao, D.; Yang, L.; Zhou, X.; Ye Lin, Y.; Yang, Y. (2022). Assessment of Features between Multichannel Electrohysterogram for Differentiation of Labors. Sensors. 22(9):1-18. https://doi.org/10.3390/s2209335211822

    Effects of force load, muscle fatigue and extremely low frequency magnetic stimulation on EEG signals during side arm lateral raise task

    Get PDF
    Objective: This study was to quantitatively investigate the effects of force load, muscle fatigue and extremely low frequency (ELF) magnetic stimulation on electroencephalography (EEG) signal features during side arm lateral raise task. Approach: EEG signals were recorded by a BIOSEMI Active Two system with Pin-Type active-electrodes from 18 healthy subjects when they performed the right arm side lateral raise task (90° away from the body) with three different loads (0 kg, 1 kg and 3 kg; their order was randomized among the subjects) on the forearm. The arm maintained the loads until the subject felt exhausted. The first 10 s recording for each load was regarded as non-fatigue status and the last 10 s before the subject was exhausted as fatigue status. The subject was then given a 5 min resting between different loads. Two days later, the same experiment was performed on each subject except that ELF magnetic stimulation was applied to the subject's deltoid muscle during the 5 min resting period. EEG features from C3 and C4 electrodes including the power of alpha, beta and gamma and sample entropy were analyzed and compared between different loads, non-fatigue/fatigue status, and with/without ELF magnetic stimulation. Main results: The key results were associated with the change of the power of alpha band. From both C3-EEG and C4-EEG, with 1 kg and 3 kg force loads, the power of alpha band was significantly smaller than that from 0 kg for both non-fatigue and fatigue periods (all p    0.05 for all the force loads except C4-EEG with ELF simulation). The power of alpha band at fatigue status was significantly increased for both C3-EEG and C4-EEG when compared with the non-fatigue status (p    0.05, except between non-fatigue and fatigue with magnetic stimulation in gamma band of C3-EEG at 1 kg, and in the SampEn at 1 kg and 3 kg force loads from C4-EEG). Significance: Our study comprehensively quantified the effects of force, fatigue and the ELF magnetic stimulation on EEG features with difference forces, fatigue status and ELF magnetic stimulation

    Effects of force load, muscle fatigue and magnetic stimulation on surface electromyography during side arm lateral raise task: a preliminary study with healthy subjects

    Get PDF
    The aim of this study was to quantitatively investigate the effects of force load, muscle fatigue and extremely low frequency (ELF) magnetic stimulation on surface electromyography (SEMG) signal features during side arm lateral raise task. SEMG signals were recorded from 18 healthy subjects on the anterior deltoid using a BIOSEMI Active Two system during side lateral raise task (with the right arm 90 degrees away from the body) with three different loads on the forearm (0kg, 1kg and 3 kg; their order was randomized between subjects). The arm maintained the loads until the subject felt exhausted. The first 10s recording for each load was regarded as non-fatigue status and the last 10s before the subject was exhausted as fatigue status. The subject was then given a five-minute resting between different loads. Two days later, the same experiment was repeated on every subject, while this time the ELF magnetic stimulation was applied to the subject’s deltoid muscle during the five-minute rest period. Three commonly used SEMG features, including root mean square (RMS), median frequency (MDF) and sample entropy (SampEn) were analyzed and compared between different loads, non-fatigue/fatigue status, and with/without ELF magnetic stimulation. Variance analysis results showed that the effect of force load on RMS was significant (p0.05). In comparison with non-fatigue status, for all the different force loads with and without ELF stimulation, RMS was significantly larger at fatigue (all p0.05). Finally, the RMS, MDF, SampEn and their changes with force were not significantly different between with and without ELF stimulation (all p>0.05). Our study comprehensively quantified the effects of force, fatigue and the ELF magnetic stimulation on SEMG features, which may facilitate a better understanding of the underlying physiological mechanisms of muscle activities associated with force and fatigue, and of muscle physiological response to ELF magnetic stimulation

    CD39 Expression in Peripheral T Cells is Associated with Clinicopathological Characteristics in Patients with Cervical Cancer

    Get PDF
    Background: CD39 is an inhibitory checkpoint exerting rate-limiting effects on the ATP-adenosine pathway. It can be targeted to block adenosine-mediated immunosuppression.Objective: To analyze the relationship between the CD39 expression and clinicopathological characteristics including FIGO stage, lymph node and distant metastasis, and to further explore its potential role in cervical cancer.Methods: Peripheral blood was collected from 59 healthy people and 43 patients with cervical cancer. The percentage and absolute counts of CD3-positive, CD4-positive and CD8-positive T lymphocytes, CD4/CD8 ratio and the percentage of the CD39+ T cells in T lymphocytes were assessed by flow cytometry, and their correlations with clinical parameters were analyzed.Results: Absolute numbers of CD8+ T lymphocytes, CD4/CD8 ratios, and the percentage of the CD39+ T cells were linked with FIGO stage, lymph node metastasis, and distant metastasis. The total numbers of CD8+ T lymphocytes were significantly higher in the peripheral blood of patients with cervical cancer in the early and middle stages than in the advanced stage. In addition, patients with early and middle-stage cervical cancer had considerably lower percentage of CD4+ CD39 + and CD8 + CD39 + T lymphocytes than those with advanced cervical cancer.Conclusion: These results suggest that the absolute counts of CD8+ T lymphocytes may be associated with the patient’s prognosis and that the CD39 molecule, expressed on the surface of CD8+ T cells, is also related to FIGO stage, lymph node metastasis, and distant metastasis. CD39 expression on CD8-positive T cells exhibits a negative correlation with the number of CD8-positive T lymphocytes

    Binding Features and Functions of ATG3

    Get PDF
    Autophagy is an evolutionarily conserved catabolic process that is essential for maintaining cellular, tissue, and organismal homeostasis. Autophagy-related (ATG) genes are indispensable for autophagosome formation. ATG3 is one of the key genes involved in autophagy, and its homologs are common in eukaryotes. During autophagy, ATG3 acts as an E2 ubiquitin-like conjugating enzyme in the ATG8 conjugation system, contributing to phagophore elongation. ATG3 has also been found to participate in many physiological and pathological processes in an autophagy-dependent manner, such as tumor occurrence and progression, ischemia–reperfusion injury, clearance of pathogens, and maintenance of organelle homeostasis. Intriguingly, a few studies have recently discovered the autophagy-independent functions of ATG3, including cell differentiation and mitosis. Here, we summarize the current knowledge of ATG3 in autophagosome formation, highlight its binding partners and binding sites, review its autophagy-dependent functions, and provide a brief introduction into its autophagy-independent functions
    corecore