179 research outputs found

    Respiratory impedance in healthy unsedated South African infants: Effects of maternal smoking

    Get PDF
    Background and objective: Non-invasive techniques for measuring lung mechanics in infants are needed for a better understanding of lung growth and function, and to study the effects of prenatal factors on subsequent lung growth in healthy infants. The forced oscillation technique requires minimal cooperation from the individual but has rarely been used in infants. The study aims to assess the use of the forced oscillation technique to measure the influence of antenatal exposures on respiratory mechanics in unsedated infants enrolled in a birth cohort study in Cape Town, South Africa. Methods: Healthy term infants were studied at 6–10 weeks of age using the forced oscillation technique. Respiratory impedance was measured in the frequency range 8–48 Hz via a face mask during natural sleep. Respiratory system resistance, compliance and inertance were calculated from the impedance spectra. Results: Of 177 infants tested, successful measurements were obtained in 164 (93%). Median (25–75%) values for resistance, compliance and inertance were 50.2 (39.5–60.6) cmH2O.s.L−1, 0.78 (0.61–0.99) mL.cmH2O−1 and 0.062 (0.050–0.086) cmH2O.s2.L−1, respectively. As a group, male infants had 16% higher resistance (P = 0.006) and 18% lower compliance (P  = 0.02) than females. Infants whose mothers smoked during pregnancy had a 19% lower compliance than infants not exposed to tobacco smoke during pregnancy (P = 0.005). Neither maternal HIV infection nor ethnicity had a significant effect on respiratory mechanics. Conclusions: The forced oscillation technique is sensitive enough to demonstrate the effects of tobacco smoke exposure and sex in respiratory mechanics in healthy infants. This technique will facilitate assessing perinatal influences of lung function in infancy

    Scaling behavior in crackle sound during lung inflation

    Get PDF
    During slow inflation of lung lobes, we measure a sequence of short explosive transient sound waves called "crackles," each consisting of an initial spike followed by ringing. The crackle time series is irregular and intermittent, with the number of spikes of size s following a power law, n(s)proportional to s(-alpha), with alpha = 2.77 +/- 0.05. We develop a model of crackle wave generation and propagation in a tree structure that combines the avalanchelike opening of airway segments with the wave propagation of crackles in a tree structure. The agreement between experiments and simulations suggests that (i) the irregularities are a consequence of structural heterogeneity in the lung, (ii) the intermittent behavior is due to the avalanchelike opening, and (iii) the scaling is a result of successive attenuations acting on the sound spikes as they propagate through a cascade of bifurcations along the airway tree. [S1063-651X(99)13810-8]

    Static and dynamic mechanics of the murine lung after intratracheal bleomycin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite its widespread use in pulmonary fibrosis research, the bleomycin mouse model has not been thoroughly validated from a pulmonary functional standpoint using new technologies. Purpose of this study was to systematically assess the functional alterations induced in murine lungs by fibrogenic agent bleomycin and to compare the forced oscillation technique with quasi-static pressure-volume curves in mice following bleomycin exposure.</p> <p>Methods</p> <p>Single intratracheal injections of saline (50 μL) or bleomycin (2 mg/Kg in 50 μL saline) were administered to C57BL/6 (<it>n </it>= 40) and Balb/c (<it>n </it>= 32) mice. Injury/fibrosis score, tissue volume density (TVD), collagen content, airway resistance (<it>R<sub>N</sub></it>), tissue damping (<it>G</it>) and elastance coefficient (<it>H</it>), hysteresivity (<it>η</it>), and area of pressure-volume curve (PV-A) were determined after 7 and 21 days (inflammation and fibrosis stage, respectively). Statistical hypothesis testing was performed using one-way ANOVA with LSD <it>post hoc </it>tests.</p> <p>Results</p> <p>Both C57BL/6 and Balb/c mice developed weight loss and lung inflammation after bleomycin. However, only C57BL/6 mice displayed cachexia and fibrosis, evidenced by increased fibrosis score, TVD, and collagen. At day 7, PV-A increased significantly and <it>G </it>and <it>H </it>non-significantly in bleomycin-exposed C57BL/6 mice compared to saline controls and further increase in all parameters was documented at day 21. <it>G </it>and <it>H</it>, but not PV-A, correlated well with the presence of fibrosis based on histology, TVD and collagen. In Balb/c mice, no change in collagen content, histology score, TVD, <it>H </it>and <it>G </it>was noted following bleomycin exposure, yet PV-A increased significantly compared to saline controls.</p> <p>Conclusions</p> <p>Lung dysfunction in the bleomycin model is more pronounced during the fibrosis stage rather than the inflammation stage. Forced oscillation mechanics are accurate indicators of experimental bleomycin-induced lung fibrosis. Quasi-static PV-curves may be more sensitive than forced oscillations at detecting inflammation and fibrosis.</p

    Decreased plasma nociceptin/orphanin FQ levels after acute coronary syndromes

    Get PDF
    Foregoing researches made on the N/OFQ system brought up a possible role for this system in cardiovascular regulation. In this study we examined how N/OFQ levels of the blood plasma changed in acute cardiovascular diseases. Three cardiac patient groups were created: enzyme positive acute coronary syndrome (EPACS, n = 10), enzyme negative ACS (ENACS, n = 7) and ischemic heart disease (IHD, n = 11). We compared the patients to healthy control subjects (n = 31). We found significantly lower N/OFQ levels in the EPACS [6.86 (6.21–7.38) pg/ml], ENACS [6.97 (6.87–7.01) pg/ml and IHD groups [7.58 (7.23–8.20) pg/ml] compared to the control group [8.86 (7.27–9.83) pg/ml]. A significant correlation was detected between N/OFQ and white blood cell count (WBC), platelet count (PLT), creatine kinase (CK), glutamate oxaloacetate transaminase (GOT) and cholesterol levels in the EPACS group.Decreased plasma N/OFQ is closely associated with the presence of acute cardiovascular disease, and the severity of symptoms has a significant negative correlation with the N/OFQ levels. We believe that the rate of N/OFQ depression is in association with the level of ischemic stress and the following inflammatory response. Further investigations are needed to clarify the relevance and elucidate the exact effects of the ischemic stress on the N/OFQ system

    Histamine H4 receptor antagonism diminishes existing airway inflammation and dysfunction via modulation of Th2 cytokines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Airway remodeling and dysfunction are characteristic features of asthma thought to be caused by aberrant production of Th2 cytokines. Histamine H<sub>4 </sub>receptor (H<sub>4</sub>R) perturbation has previously been shown to modify acute inflammation and Th2 cytokine production in a murine model of asthma. We examined the ability of H<sub>4</sub>R antagonists to therapeutically modify the effects of Th2 cytokine production such as goblet cell hyperplasia (GCH), and collagen deposition in a sub-chronic model of asthma. In addition, effects on Th2 mediated lung dysfunction were also determined.</p> <p>Methods</p> <p>Mice were sensitized to ovalbumin (OVA) followed by repeated airway challenge with OVA. After inflammation was established mice were dosed with the H<sub>4</sub>R antagonist, JNJ 7777120, or anti-IL-13 antibody for comparison. Airway hyperreactivity (AHR) was measured, lungs lavaged and tissues collected for analysis.</p> <p>Results</p> <p>Therapeutic H<sub>4</sub>R antagonism inhibited T cell infiltration in to the lung and decreased Th2 cytokines IL-13 and IL-5. IL-13 dependent remodeling parameters such as GCH and lung collagen were reduced. Intervention with H<sub>4</sub>R antagonist also improved measures of central and peripheral airway dysfunction.</p> <p>Conclusions</p> <p>These data demonstrate that therapeutic H<sub>4</sub>R antagonism can significantly ameliorate allergen induced, Th2 cytokine driven pathologies such as lung remodeling and airway dysfunction. The ability of H<sub>4</sub>R antagonists to affect these key manifestations of asthma suggests their potential as novel human therapeutics.</p

    The role of endothelin-1 in hyperoxia-induced lung injury in mice

    Get PDF
    BACKGROUND: As prolonged hyperoxia induces extensive lung tissue damage, we set out to investigate the involvement of endothelin-1 (ET-1) receptors in these adverse changes. METHODS: Experiments were performed on four groups of mice: control animals kept in room air and a group of mice exposed to hyperoxia for 60 h were not subjected to ET-1 receptor blockade, whereas the dual ETA/ETB-receptor blocker tezosantan (TEZ) was administered via an intraperitoneal pump (10 mg/kg/day for 6 days) to other groups of normal and hyperoxic mice. The respiratory system impedance (Zrs) was measured by means of forced oscillations in the anesthetized, paralyzed and mechanically ventilated mice before and after the iv injection of ET-1 (2 μg). Changes in the airway resistance (Raw) and in the tissue damping (G) and elastance (H) of a constant-phase tissue compartment were identified from Zrs by model fitting. RESULTS: The plasma ET-1 level increased in the mice exposed to hyperoxia (3.3 ± 1.6 pg/ml) relative to those exposed to room air (1.6 ± 0.3 pg/ml, p < 0.05). TEZ administration prevented the hyperoxia-induced increases in G (13.1 ± 1.7 vs. 9.6 ± 0.3 cmH(2)O/l, p < 0.05) and H (59 ± 9 vs. 41 ± 5 cmH(2)O/l, p < 0.05) and inhibited the lung responses to ET-1. Hyperoxia decreased the reactivity of the airways to ET-1, whereas it elevated the reactivity of the tissues. CONCLUSION: These findings substantiate the involvement of the ET-1 receptors in the physiopathogenesis of hyperoxia-induced lung damage. Dual ET-1 receptor antagonism may well be of value in the prevention of hyperoxia-induced parenchymal damage

    Prevention of bronchial hyperreactivity in a rat model of precapillary pulmonary hypertension

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The development of bronchial hyperreactivity (BHR) subsequent to precapillary pulmonary hypertension (PHT) was prevented by acting on the major signalling pathways (endothelin, nitric oxide, vasoactive intestine peptide (VIP) and prostacyclin) involved in the control of the pulmonary vascular and bronchial tones.</p> <p>Methods</p> <p>Five groups of rats underwent surgery to prepare an aorta-caval shunt (ACS) to induce sustained precapillary PHT for 4 weeks. During this period, no treatment was applied in one group (ACS controls), while the other groups were pretreated with VIP, iloprost, tezosentan via an intraperitoneally implemented osmotic pump, or by orally administered sildenafil. An additional group underwent sham surgery. Four weeks later, the lung responsiveness to increasing doses of an intravenous infusion of methacholine (2, 4, 8 12 and 24 μg/kg/min) was determined by using the forced oscillation technique to assess the airway resistance (Raw).</p> <p>Results</p> <p>BHR developed in the untreated rats, as reflected by a significant decrease in ED<sub>50</sub>, the equivalent dose of methacholine required to cause a 50% increase in Raw. All drugs tested prevented the development of BHR, iloprost being the most effective in reducing both the systolic pulmonary arterial pressure (Ppa; 28%, p = 0.035) and BHR (ED<sub>50 </sub>= 9.9 ± 1.7 vs. 43 ± 11 μg/kg in ACS control and iloprost-treated rats, respectively, p = 0.008). Significant correlations were found between the levels of Ppa and ED<sub>50 </sub>(R = -0.59, p = 0.016), indicating that mechanical interdependence is primarily responsible for the development of BHR.</p> <p>Conclusions</p> <p>The efficiency of such treatment demonstrates that re-establishment of the balance of constrictor/dilator mediators via various signalling pathways involved in PHT is of potential benefit for the avoidance of the development of BHR.</p
    corecore