2,158 research outputs found

    A–C Estrogens as Potent and Selective Estrogen Receptor-Beta Agonists (SERBAs) to Enhance Memory Consolidation under Low-Estrogen Conditions

    Get PDF
    Estrogen receptor-beta (ERβ) is a drug target for memory consolidation in postmenopausal women. Herein is reported a series of potent and selective ERβ agonists (SERBAs) with in vivo efficacy that are A–C estrogens, lacking the B and D estrogen rings. The most potent and selective A–C estrogen is selective for activating ER relative to seven other nuclear hormone receptors, with a surprising 750-fold selectivity for the β over α isoform and with EC50s of 20–30 nM in cell-based and direct binding assays. Comparison of potency in different assays suggests that the ER isoform selectivity is related to the compound’s ability to drive the productive conformational change needed to activate transcription. The compound also shows in vivo efficacy after microinfusion into the dorsal hippocampus and after intraperitoneal injection (0.5 mg/kg) or oral gavage (0.5 mg/kg). This simple yet novel A–C estrogen is selective, brain penetrant, and facilitates memory consolidation

    Synthesis and Evaluation of 4-Cycloheptylphenols as Selective Estrogen Receptor-β Agonists (SERBAs)

    Get PDF
    A short and efficient route to 4-(4-hydroxyphenyl)cycloheptanemethanol was developed, which resulted in the preparation of a mixture of 4 stereoisomers. The stereoisomers were separated by preparative HPLC, and two of the stereoisomers identified by X-ray crystallography. The stereoisomers, as well as a small family of 4-cycloheptylphenol derivatives, were evaluated as estrogen receptor-beta agonists. The lead compound, 4-(4-hydroxyphenyl)cycloheptanemethanol was selective for activating ER relative to seven other nuclear hormone receptors, with 300-fold selectivity for the β over α isoform and with EC50 of 30–50 nM in cell-based and direct binding assays

    Simultaneously Targeting the NS3 Protease And Helicase Activities For More Effective Hepatitis C Virus Therapy

    Get PDF
    This study examines the specificity and mechanism of action of a recently reported hepatitis C virus (HCV) non-structural protein 3 (NS3) helicase-protease inhibitor (HPI), and the interaction of HPI with the NS3 protease inhibitors telaprevir, boceprevir, danoprevir, and grazoprevir. HPI most effectively reduced cellular levels of subgenomic genotype 4a replicons, followed by genotypes 3a and 1b replicons. HPI had no effect on HCV genotype 2a or dengue virus replicon levels. Resistance evolved more slowly to HPI than telaprevir, and HPI inhibited telaprevir-resistant replicons. Molecular modeling and analysis of the ability of HPI to inhibit peptide hydrolysis catalyzed by a variety of wildtype and mutant NS3 proteins suggested that HPI forms a bridge between the NS3 RNA-binding cleft and an allosteric site previously shown to bind other protease inhibitors. In most combinations, the antiviral effect of HPI was additive with telaprevir, boceprevir, minor synergy was observed with danoprevir and modest synergy was observed with grazoprevir

    Benzothiazole and Pyrrolone Flavivirus Inhibitors Targeting the Viral Helicase

    Get PDF
    The flavivirus nonstructural protein 3 (NS3) is a protease and helicase, and on the basis of its similarity to its homologue encoded by the hepatitis C virus (HCV), the flavivirus NS3 might be a promising drug target. Few flavivirus helicase inhibitors have been reported, in part, because few specific inhibitors have been identified when nucleic acid unwinding assays have been used to screen for helicase inhibitors. To explore the possibility that compounds inhibiting NS3-catalyzed ATP hydrolysis might function as antivirals even if they do not inhibit RNA unwinding in vitro, we designed a robust dengue virus (DENV) NS3 ATPase assay suitable for high-throughput screening. Members of two classes of inhibitory compounds were further tested in DENV helicase-catalyzed RNA unwinding assays, assays monitoring HCV helicase action, subgenomic DENV replicon assays, and cell viability assays and for their ability to inhibit West Nile virus (Kunjin subtype) replication in cells. The first class contained analogues of NIH molecular probe ML283, a benzothiazole oligomer derived from the dye primuline, and they also inhibited HCV helicase and DENV NS3-catalyzed RNA unwinding. The most intriguing ML283 analogue inhibited DENV NS3 with an IC50 value of 500 nM and was active against the DENV replicon. The second class contained specific DENV ATPase inhibitors that did not inhibit DENV RNA unwinding or reactions catalyzed by HCV helicase. Members of this class contained a 4-hydroxy-3-(5-methylfuran-2-carbonyl)-2H-pyrrol-5-one scaffold, and about 20 μM of the most potent pyrrolone inhibited both DENV replicons and West Nile virus replication in cells by 50%

    Optimization of Potent Hepatitis C Virus NS3 Helicase Inhibitors Isolated from the Yellow Dyes Thioflavine S Primuline

    Get PDF
    A screen for hepatitis C virus (HCV) NS3 helicase inhibitors revealed that the commercial dye thioflavine S was the most potent inhibitor of NS3-catalyzed DNA and RNA unwinding in the 827-compound National Cancer Institute Mechanistic Set. Thioflavine S and the related dye primuline were separated here into their pure components, all of which were oligomers of substituted benzothiazoles. The most potent compound (P4), a benzothiazole tetramer, inhibited unwinding >50% at 2±1 μM, inhibited the subgenomic HCV replicon at 10 μM, and was not toxic at 100 μM. Because P4 also interacted with DNA, more specific analogs were synthesized from the abundant dimeric component of primuline. Some of the 29 analogs prepared retained ability to inhibit HCV helicase but did not appear to interact with DNA. The most potent of these specific helicase inhibitors (compound 17) was active against the replicon and inhibited the helicase more than 50% at 2.6±1 μM

    Identification and analysis of hepatitis C virus NS3 helicase inhibitors using nucleic acid binding assays

    Get PDF
    Typical assays used to discover and analyze small molecules that inhibit the hepatitis C virus (HCV) NS3 helicase yield few hits and are often confounded by compound interference. Oligonucleotide binding assays are examined here as an alternative. After comparing fluorescence polarization (FP), homogeneous time-resolved fluorescence (HTRF®; Cisbio) and AlphaScreen® (Perkin Elmer) assays, an FP-based assay was chosen to screen Sigma’s Library of Pharmacologically Active Compounds (LOPAC) for compounds that inhibit NS3-DNA complex formation. Four LOPAC compounds inhibited the FP-based assay: aurintricarboxylic acid (ATA) (IC50 = 1.4 μM), suramin sodium salt (IC50 = 3.6 μM), NF 023 hydrate (IC50 = 6.2 μM) and tyrphostin AG 538 (IC50 = 3.6 μM). All but AG 538 inhibited helicase-catalyzed strand separation, and all but NF 023 inhibited replication of subgenomic HCV replicons. A counterscreen using Escherichia coli single-stranded DNA binding protein (SSB) revealed that none of the new HCV helicase inhibitors were specific for NS3h. However, when the SSB-based assay was used to analyze derivatives of another non-specific helicase inhibitor, the main component of the dye primuline, it revealed that some primuline derivatives (e.g. PubChem CID50930730) are up to 30-fold more specific for HCV NS3h than similarly potent HCV helicase inhibitors.National Institutes of Health [RO1 AI088001]; Research Growth Initiative Award [101X219] from the University of Wisconsin-Milwaukee Research Foundation; National Institutes of Health Molecular Libraries Initiative [U54 HG005031]. Funding for open access charge: University of Wisconsin-Milwaukee Research Foundation

    Upper limits on the strength of periodic gravitational waves from PSR J1939+2134

    Get PDF
    The first science run of the LIGO and GEO gravitational wave detectors presented the opportunity to test methods of searching for gravitational waves from known pulsars. Here we present new direct upper limits on the strength of waves from the pulsar PSR J1939+2134 using two independent analysis methods, one in the frequency domain using frequentist statistics and one in the time domain using Bayesian inference. Both methods show that the strain amplitude at Earth from this pulsar is less than a few times 102210^{-22}.Comment: 7 pages, 1 figure, to appear in the Proceedings of the 5th Edoardo Amaldi Conference on Gravitational Waves, Tirrenia, Pisa, Italy, 6-11 July 200

    Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers

    Get PDF
    We study frequency dependent (FD) input-output schemes for signal-recycling interferometers, the baseline design of Advanced LIGO and the current configuration of GEO 600. Complementary to a recent proposal by Harms et al. to use FD input squeezing and ordinary homodyne detection, we explore a scheme which uses ordinary squeezed vacuum, but FD readout. Both schemes, which are sub-optimal among all possible input-output schemes, provide a global noise suppression by the power squeeze factor, while being realizable by using detuned Fabry-Perot cavities as input/output filters. At high frequencies, the two schemes are shown to be equivalent, while at low frequencies our scheme gives better performance than that of Harms et al., and is nearly fully optimal. We then study the sensitivity improvement achievable by these schemes in Advanced LIGO era (with 30-m filter cavities and current estimates of filter-mirror losses and thermal noise), for neutron star binary inspirals, and for narrowband GW sources such as low-mass X-ray binaries and known radio pulsars. Optical losses are shown to be a major obstacle for the actual implementation of these techniques in Advanced LIGO. On time scales of third-generation interferometers, like EURO/LIGO-III (~2012), with kilometer-scale filter cavities, a signal-recycling interferometer with the FD readout scheme explored in this paper can have performances comparable to existing proposals. [abridged]Comment: Figs. 9 and 12 corrected; Appendix added for narrowband data analysi

    Search for gravitational wave bursts in LIGO's third science run

    Get PDF
    We report on a search for gravitational wave bursts in data from the three LIGO interferometric detectors during their third science run. The search targets subsecond bursts in the frequency range 100-1100 Hz for which no waveform model is assumed, and has a sensitivity in terms of the root-sum-square (rss) strain amplitude of hrss ~ 10^{-20} / sqrt(Hz). No gravitational wave signals were detected in the 8 days of analyzed data.Comment: 12 pages, 6 figures. Amaldi-6 conference proceedings to be published in Classical and Quantum Gravit

    A Multicenter Evaluation of Pediatric Emergency Department Injury Visits during the COVID-19 Pandemic

    Get PDF
    BACKGROUND: Injuries, the leading cause of death in children 1-17 years old, are often preventable. Injury patterns are impacted by changes in the child\u27s environment, shifts in supervision, and caregiver stressors. The objective of this study was to evaluate the incidence and proportion of injuries, mechanisms, and severity seen in Pediatric Emergency Departments (PEDs) during the COVID-19 pandemic. METHODS: This multicenter, cross-sectional study from January 2019 through December 2020 examined visits to 40 PEDs for children \u3c 18 years old. Injury was defined by at least one International Classification of Disease-10th revision (ICD-10) code for bodily injury (S00-T78). The main study outcomes were total and proportion of PED injury-related visits compared to all visits in March through December 2020 and to the same months in 2019. Weekly injury visits as a percentage of total PED visits were calculated for all weeks between January 2019 and December 2020. RESULTS: The study included 741,418 PED visits for injuries pre-COVID-19 pandemic (2019) and during the COVID-19 pandemic (2020). Overall PED visits from all causes decreased 27.4% in March to December 2020 compared to the same time frame in 2019; however, the proportion of injury-related PED visits in 2020 increased by 37.7%. In 2020, injured children were younger (median age 6.31 years vs 7.31 in 2019), more commonly White (54% vs 50%, p \u3c 0.001), non-Hispanic (72% vs 69%, p \u3c 0.001) and had private insurance (35% vs 32%, p \u3c 0.001). Injury hospitalizations increased 2.2% (p \u3c 0.001) and deaths increased 0.03% (p \u3c 0.001) in 2020 compared to 2019. Mean injury severity score increased (2.2 to 2.4, p \u3c 0.001) between 2019 and 2020. Injuries declined for struck by/against (- 4.9%) and overexertion (- 1.2%) mechanisms. Injuries proportionally increased for pedal cycles (2.8%), cut/pierce (1.5%), motor vehicle occupant (0.9%), other transportation (0.6%), fire/burn (0.5%) and firearms (0.3%) compared to all injuries in 2020 versus 2019. CONCLUSIONS: The proportion of PED injury-related visits in March through December 2020 increased compared to the same months in 2019. Racial and payor differences were noted. Mechanisms of injury seen in the PED during 2020 changed compared to 2019, and this can inform injury prevention initiatives
    corecore