6,860 research outputs found

    Elastic deformation due to tangential capillary forces \ud

    Get PDF
    A sessile liquid drop can deform the substrate on which it rests if the solid is sufficiently “soft.” In this paper we compute the detailed spatial structure of the capillary forces exerted by the drop on the solid substrate using a model based on Density Functional Theory. We show that, in addition to the normal forces, the drop exerts a previously unaccounted tangential force. The resultant effect on the solid is a pulling force near the contact line directed towards the interior of the drop, i.e., not along the interface. The resulting elastic deformations of the solid are worked out and illustrate the importance of the tangential force

    The CMS Event Builder

    Full text link
    The data acquisition system of the CMS experiment at the Large Hadron Collider will employ an event builder which will combine data from about 500 data sources into full events at an aggregate throughput of 100 GByte/s. Several architectures and switch technologies have been evaluated for the DAQ Technical Design Report by measurements with test benches and by simulation. This paper describes studies of an EVB test-bench based on 64 PCs acting as data sources and data consumers and employing both Gigabit Ethernet and Myrinet technologies as the interconnect. In the case of Ethernet, protocols based on Layer-2 frames and on TCP/IP are evaluated. Results from ongoing studies, including measurements on throughput and scaling are presented. The architecture of the baseline CMS event builder will be outlined. The event builder is organised into two stages with intelligent buffers in between. The first stage contains 64 switches performing a first level of data concentration by building super-fragments from fragments of 8 data sources. The second stage combines the 64 super-fragments into full events. This architecture allows installation of the second stage of the event builder in steps, with the overall throughput scaling linearly with the number of switches in the second stage. Possible implementations of the components of the event builder are discussed and the expected performance of the full event builder is outlined.Comment: Conference CHEP0

    Using XDAQ in Application Scenarios of the CMS Experiment

    Full text link
    XDAQ is a generic data acquisition software environment that emerged from a rich set of of use-cases encountered in the CMS experiment. They cover not the deployment for multiple sub-detectors and the operation of different processing and networking equipment as well as a distributed collaboration of users with different needs. The use of the software in various application scenarios demonstrated the viability of the approach. We discuss two applications, the tracker local DAQ system for front-end commissioning and the muon chamber validation system. The description is completed by a brief overview of XDAQ.Comment: Conference CHEP 2003 (Computing in High Energy and Nuclear Physics, La Jolla, CA

    Introduction : screen Londons

    Get PDF
    Our aim, in editing the ‘London Issue’ of this journal, is to contribute to a conversation between scholars of British cinema and television, London historians and scholars of the cinematic city. In 2007, introducing the themed issue on ‘Space and Place in British Cinema and Television’, Steve Chibnall and Julian Petley observed that it would have been possible to fill the whole journal with essays about the representation of London. This issue does just that, responding to the increased interest in cinematic and, to a lesser extent, televisual, Londons, while also demonstrating the continuing fertility of the paradigms of ‘space and place’ for scholars of the moving image1. It includes a wide range of approaches to the topic of London on screen, with varying attention to British institutions of the moving image – such as Channel Four or the British Board of Film Classification – as well as to concepts such as genre, narration and memory. As a whole, the issue, through its juxtapositions of method and approach, shows something of the complexity of encounters between the terms ‘London’, ‘cinema’ and ‘television’ within British film and television studies

    Integral equations for simple fluids in a general reference functional approach

    Full text link
    The integral equations for the correlation functions of an inhomogeneous fluid mixture are derived using a functional Taylor expansion of the free energy around an inhomogeneous equilibrium distribution. The system of equations is closed by the introduction of a reference functional for the correlations beyond second order in the density difference from the equilibrium distribution. Explicit expressions are obtained for energies required to insert particles of the fluid mixture into the inhomogeneous system. The approach is illustrated by the determination of the equation of state of a simple, truncated Lennard--Jones fluid and the analysis of the behavior of this fluid near a hard wall. The wall--fluid integral equation exhibits complete drying and the corresponding coexisting densities are in good agreement with those obtained from the standard (Maxwell) construction applied to the bulk fluid. Self--consistency of the approach is examined by analyzing the virial/compressibility routes to the equation of state and the Gibbs--Duhem relation for the bulk fluid, and the contact density sum rule and the Gibbs adsorption equation for the hard wall problem. For the bulk fluid, we find good self--consistency for stable states outside the critical region. For the hard wall problem, the Gibbs adsorption equation is fulfilled very well near phase coexistence where the adsorption is large.For the contact density sum rule, we find some deviationsnear coexistence due to a slight disagreement between the coexisting density for the gas phase obtained from the Maxwell construction and from complete drying at the hard wall.Comment: 29 page

    Candida albicans repetitive elements display epigenetic diversity and plasticity

    Get PDF
    Transcriptionally silent heterochromatin is associated with repetitive DNA. It is poorly understood whether and how heterochromatin differs between different organisms and whether its structure can be remodelled in response to environmental signals. Here, we address this question by analysing the chromatin state associated with DNA repeats in the human fungal pathogen Candida albicans. Our analyses indicate that, contrary to model systems, each type of repetitive element is assembled into a distinct chromatin state. Classical Sir2-dependent hypoacetylated and hypomethylated chromatin is associated with the rDNA locus while telomeric regions are assembled into a weak heterochromatin that is only mildly hypoacetylated and hypomethylated. Major Repeat Sequences, a class of tandem repeats, are assembled into an intermediate chromatin state bearing features of both euchromatin and heterochromatin. Marker gene silencing assays and genome-wide RNA sequencing reveals that C. albicans heterochromatin represses expression of repeat-associated coding and non-coding RNAs. We find that telomeric heterochromatin is dynamic and remodelled upon an environmental change. Weak heterochromatin is associated with telomeres at 30?°C, while robust heterochromatin is assembled over these regions at 39?°C, a temperature mimicking moderate fever in the host. Thus in C. albicans, differential chromatin states controls gene expression and epigenetic plasticity is linked to adaptation

    Gauge invariant determination of charged hadron masses

    Get PDF
    In this paper we show, for the first time, that charged-hadron masses can be calculated on the lattice without relying on gauge fixing at any stage of the calculations. In our simulations we follow a recent proposal and formulate full QCD+QED on a finite volume, without spoiling locality, by imposing C-periodic boundary conditions in the spatial directions. Electrically charged states are interpolated with a class of operators, originally suggested by Dirac and built as functionals of the photon field, that are invariant under local gauge transformations. We show that the quality of the numerical signal of charged-hadron masses is the same as in the neutral sector and that charged-neutral mass splittings can be calculated with satisfactory accuracy in this setup. We also discuss how to describe states of charged hadrons with real photons in a fully gauge-invariant way by providing a first evidence that the proposed strategy can be numerically viable

    Regulation of Sodium Channel Function by Bilayer Elasticity: The Importance of Hydrophobic Coupling. Effects of Micelle-forming Amphiphiles and Cholesterol

    Get PDF
    Membrane proteins are regulated by the lipid bilayer composition. Specific lipid–protein interactions rarely are involved, which suggests that the regulation is due to changes in some general bilayer property (or properties). The hydrophobic coupling between a membrane-spanning protein and the surrounding bilayer means that protein conformational changes may be associated with a reversible, local bilayer deformation. Lipid bilayers are elastic bodies, and the energetic cost of the bilayer deformation contributes to the total energetic cost of the protein conformational change. The energetics and kinetics of the protein conformational changes therefore will be regulated by the bilayer elasticity, which is determined by the lipid composition. This hydrophobic coupling mechanism has been studied extensively in gramicidin channels, where the channel–bilayer hydrophobic interactions link a “conformational” change (the monomer↔dimer transition) to an elastic bilayer deformation. Gramicidin channels thus are regulated by the lipid bilayer elastic properties (thickness, monolayer equilibrium curvature, and compression and bending moduli). To investigate whether this hydrophobic coupling mechanism could be a general mechanism regulating membrane protein function, we examined whether voltage-dependent skeletal-muscle sodium channels, expressed in HEK293 cells, are regulated by bilayer elasticity, as monitored using gramicidin A (gA) channels. Nonphysiological amphiphiles (β-octyl-glucoside, Genapol X-100, Triton X-100, and reduced Triton X-100) that make lipid bilayers less “stiff”, as measured using gA channels, shift the voltage dependence of sodium channel inactivation toward more hyperpolarized potentials. At low amphiphile concentration, the magnitude of the shift is linearly correlated to the change in gA channel lifetime. Cholesterol-depletion, which also reduces bilayer stiffness, causes a similar shift in sodium channel inactivation. These results provide strong support for the notion that bilayer–protein hydrophobic coupling allows the bilayer elastic properties to regulate membrane protein function

    Threshold criterion for wetting at the triple point

    Full text link
    Grand canonical simulations are used to calculate adsorption isotherms of various classical gases on alkali metal and Mg surfaces. Ab initio adsorption potentials and Lennard-Jones gas-gas interactions are used. Depending on the system, the resulting behavior can be nonwetting for all temperatures studied, complete wetting, or (in the intermediate case) exhibit a wetting transition. An unusual variety of wetting transitions at the triple point is found in the case of a specific adsorption potential of intermediate strength. The general threshold for wetting near the triple point is found to be close to that predicted with a heuristic model of Cheng et al. This same conclusion was drawn in a recent experimental and simulation study of Ar on CO_2 by Mistura et al. These results imply that a dimensionless wetting parameter w is useful for predicting whether wetting behavior is present at and above the triple temperature. The nonwetting/wetting crossover value found here is w circa 3.3.Comment: 15 pages, 8 figure
    corecore