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Density Functional Simulation of a Breaking Nanowire

A. Nakamura,* M. Brandbyge,† L. B. Hansen, and K. W. Jacobsen
Center for Atomic-scale Materials Physics and Physics Department, Technical University of Denmark, DK 2800 Lyngby, Denmark

(Received 20 May 1998)

We study the deformation and breaking of an atomic-sized sodium wire using density functional
simulations. The wire deforms through sudden atomic rearrangements and smoother atomic displace-
ments. The conductance of the wire exhibits plateaus at integer values in units of2e2yh corresponding
to a specific number of eigenchannels. The transitions between plateaus can be abrupt in connection
with structural rearrangements or extend over a few Å of elongation. The interplay between con-
ductance modes and structural deformation is discussed by means of the eigenchannel transmission
probabilities. [S0031-9007(99)08496-3]

PACS numbers: 73.40.Jn, 62.20.Fe, 73.20.Dx, 73.23.Ad

The abilities to produce, manipulate, and study nanome-
ter scale structures have developed immensely over the
past years [1]. One way to produce and investigate metal-
lic nanocontacts has been to bring two pieces of metal
(for example, a scanning microscope tip and a surface) into
contact and separate them again under controlled condi-
tions. Contacts formed in this way can exhibit quantized
conductance [2–7] and they may also show interesting
mechanical behavior as, for example, indicated by sud-
den jumps in measured force curves of Au contacts during
breaking [8].

The mechanical and transport properties of metallic
nanocontacts may be influenced both by the atomic (geo-
metrical) structures of the contacts and by the confinement
of the electronic motion, and a number of experimen-
tal [8,9] and theoretical [4,10–13] studies have discussed
the interplay between the two. The combined scanning-
tunneling and atomic-force microscopy experiments by
Agraı̈t et al., for example, indicate a very close corre-
spondence between sudden changes in the force and in the
conductance during contact elongation. However, on the
theoretical side, previous calculations of the conductance
and force as a function of elongation have been based on
non-self-consistent approaches, where the atomic struc-
tures of the contacts have either been not considered at all
(i.e., jellium models [11]) or have been determined by in-
teratomic potentials which do not include effects from the
confinement of the electronic motion [4,9,10]. The need
for a self-consistent treatment of the electronic and ionic
degrees of freedom is also emphasized by recent sugges-
tions [14] that the quantization of the electronic motion in
the contacts may directly influence the force response of
the contacts.

In this study we present fully self-consistent density-
functional theory (DFT) calculations of the atomic struc-
tures of a Na nanocontact during elongation until the point
where the contact finally breaks. The force response of the
system is determined as a function of elongation and the
conductance of the contact is calculated based on the effec-
tive Kohn-Sham one-electron potential [15]. The contact

is seen to be plastically deformed through a combination of
mechanical instabilities and smooth atomic displacements.
The conductance curve exhibits plateaus at some integer
values times the conductance quantum, and at the plateaus
the conductance can be ascribed to a specific number of
eigenchannels contributing to the transmission. We show
that the transitions between the plateaus may occur sud-
denly, associated with an abrupt atomic rearrangement, or
can take place gradually over an elongation range of a few
Å. The calculated density of states in the contact region is
rather smooth, indicating only weak quantization effects on
the obtained force in the last part of the breaking process.

The electronic structure, total energy, and forces on the
ions are calculated within the local-density approximation
with a standard pseudopotential DFT code [16] using a
supercell with periodic boundary conditions (PBC). The
starting configuration for the simulation is a straight wire
with a hcp-type structure, as shown in Fig. 1. The super-
cell contains six layers with a total of 39 atoms and is
constructed by stacking alternating layers containing six
and seven Na atoms. The distance between the centers of
neighboring wires is 17.5 Å.

The simulation is carried out as follows: The wire is
elongated in small steps by expanding the unit cell in
the direction along the wire. In each elongation step, the
unit cell is dilated uniformly by 0.4 Å for16.6 # L ,

19.8 Å and by 0.2 Å for 19.8 # L # 31.4 Å, where L
is the height of the unit cell. After each step, all of the
atoms are relaxed to a local minimum energy configuration
where the forces on the atoms vanish [17]. This procedure
corresponds, in principle, to a slow stretching of the wire
at very low temperatures, where all thermal diffusion
processes are neglected and where the heat transport away
from the contact region is efficient enough to keep the
contact cold despite the work done by the applied force.

The structures at different heights of the unit cell are
shown in the upper part of Fig. 1. In Fig. 2 the total energy
and force are shown as a function of elongation together
with the sum of atomic displacements in each step. In
agreement with previous simulations [4,10,12,13,18] for
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FIG. 1. Calculated atomic structures for different heights,L,
of the unit cell. Periodic boundary conditions are applied in the
calculation. Below, the corresponding cross-sectional contours
(E 2 EF ­ 23, 22, . . . , 11 eV) of the potentials constructed
for the transmission calculation.

various metals, the breaking is seen to involve a series of
structural rearrangements which show up as discontinuities
in the total-energy and force curves. In the first part of the
simulation the wire is elastically stretched and the force
builds up until a major atomic rearrangement occurs in
which an additional layer of atoms is introduced, as shown
in the upper part of Fig. 1 (seeL ­ 21.2 Å and 22.0 Å).
The remaining part of the breaking process also involves
some rearrangements but the force never really builds up
between the rearrangements. This lack of force buildup
for the Na wire is in contrast to the case of Au, where
experiments [8] and simulations [4] display force buildup
all the way to the breaking point.

We evaluate the conductance through the wire for each
of the obtained relaxed atomic configurations by attaching
the wire to free-electron leads and calculating the transmis-
sion probability through the formed contact. In this proce-
dure we connect the potential calculated self-consistently
within the unit cell [yu.c.s$rd] to free-electron electrodes in
the following way: Let thez axis be along the direction of
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FIG. 2. The total energy of the unit cell, the sum of atomic
displacements in each step (a), and the force (b) as a function
of the height of the unit cell. The dashed lines indicate the
rearrangement points of the atomic configuration. At these
points, the total energy jumps discontinuously. The contact
breaks at the last dashed line.

the wire and let the narrowest part of the wire be located
close toz ­ 0 (which we also take as the center of the unit
cell: z1 # z # z2). The total potentialV s$rd is then con-
structed as

V s$rd ­ fsz1 2 zd fyu.c.s$rd 1 EFgfsz 2 z2d 2 EF ,
(1)

where we use a smoothing functionfsxd ­ 1yh1 1 exp3

sxysdj (s ­ 1 Å). The constructed potential goes to2EF

(the electrode bandbottom) inside the electrodes, and in the
vacuum it goes to the calculated maximum value of the
potential at the sides of the unit cell.

We note that the narrowest region of the potential is
by far the most important part regarding the transmission
[19], and we emphasize that our results do not depend
significantly on the detailed choice of connection as long
as it is sufficiently smooth.

We calculate the conductance from the transmission
matrix, tsEFd, using the Landauer-Büttiker formula [20]

G ­ G0 Trftytg , (2)

where t is obtained using a recursive multichannel
method [21].

Recently, conductanceeigenchannelshave been intro-
duced in the context of nanowires in order to understand
the underlying channels for conduction [13]. Each of the
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eigenchannels (index “n”) can be ascribed a transmission
probability, jtnj2, between 0 and 1, and the total conduc-
tance can be viewed as consisting of independent eigen-
channel contributions:

G ­ G0

X
n

jtnj2. (3)

In Fig. 3 we show the conductance and its eigenchannel
partition of each relaxed atomic configuration during the
elongation. We find that the number of open conductance
channels roughly corresponds to the number of bands in
the band structure of the PBC calculation which crosses or
approachesEF .

Before the first rearrangement, we observe a smooth
decrease of the conductance from6G0 to just above4G0
as the wire cross section smoothly narrows in. We note
here that, in this particular stage, the wire is straight and
homogeneous (inside the DFT unit cell). Therefore, the
details of the scattering at the places where the electrodes
are connected to the wire become more important.

After the first rearrangement, a bottleneck containing
three atoms has appeared (seeL ­ 22.0 Å in Fig. 1) cor-
responding to a conductance just below3G0. Inspecting
the potential around the bottleneck reveals that it is quite
rotational symmetric [12]. This leads to near-degeneracy
of two eigenchannels which is reflected in the fact that the
conductance moves from3G0 to G0 by the almost simul-
taneous closing of two channels, as shown in Fig. 3.

The first and last restructuring events lead to abrupt
changes in the conductance. However, at the three smaller
restructurings occurring in between (Fig. 2), the change in
conductance is much less dramatic.
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FIG. 3. Conductance calculated using the self-consistent
local-density approximation potential of the relaxed atomic
configurations during the elongation. Below, we show the
eigenchannel transmission probabilities,jtnj2, which sum up to
the total transmission.

The calculated conductance curve can be compared with
the experimental data for Na contacts at low temperatures
[1,5]. It can be noted that the simultaneous closing of the
second and third eigenchannels corresponds nicely with
the observed absence of a peak at2G0 in conductance
histograms obtained from breaking many contacts. The
experimental conductance curves typically involve sudden
jumps, but occasionally also gradual changes can be ob-
served. In fact, one of the curves in Ref. [1] (Fig. 3) shows
a gradual change of the conductance from3G0 to G0 over
1–2 Å, much like what is seen in this simulation. The
gradual change has been interpreted as due to a bistability
of the system [1], but in the simulation the phenomenon
occurs because of a rather smooth closing of two conduc-
tion channels.

We now address the question about the interplay be-
tween the electronic states and the structural changes. It
was recently suggested [14] that the quantization of the
electronic motion in a wire could significantly affect the
mechanical force. This effect may arise if the density
of states (DOS) shows pronounced peaks and the peaks
move through the Fermi level in connection with structural
changes. In the upper panel of Fig. 4 we show the DOS
inside the unit cell in the PBC calculation (a small broaden-
ing of the levels of0.1 eV is used). In the initial straight-
wire configuration (L ­ 21.2 Å) very pronounced peaks
are observed at the onset of the different bands. The peaks
decay roughly as1y

p
E on the high energy side as for ideal
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FIG. 4. Upper: Density of states (DOS) inside the unit cell in
the self-consistent calculation forL ­ 21.2 Å (solid line) and
L ­ 24.0 Å (dotted line). For clarity we do not show the very
peaked DOS forL ­ 30.0 Å. Lower: Local DOS (integrated
over the part of the wire in between the electrodes) for the
nanowire coupled to the electrodes. The DOS is seen to be
quite smooth after the first restructuring.
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1D free-electron bands. After the first structural rearrange-
ment (L ­ 24.0 Å), the peaks get much less pronounced;
however, a series of smaller and more closely spaced new
peaks are seen to develop. These are mostly caused by
the PBC: In the limit where the contact breaks, the system
consists of a row of independent “quantum dots” with a dis-
crete set of energy levels. In the lower panel of Fig. 4 we
show the local DOS (LDOS) integrated over the wire part
[22] in the case where free-electron leads are attached. For
the ideal initial wire configuration (L ­ 21.2 Å) we again
see clear peaks in the LDOS curve corresponding to the
onset of the bands and a reasonable agreement on the peak
locations with the upper panel. However, after the first
restructuring the LDOS becomes much smoother. The se-
ries of smaller closely spaced peaks seen in the PBC case
is completely smeared out due to the coupling to the elec-
trodes. The calculations therefore seem to indicate that the
peaked nature of the density of states seen for the idealized
homogeneous wire structures can be suppressed for more
realistic contact geometries.

In conclusion, we studied the interplay between the con-
ductance modes and the structural changes in Na nanocon-
tacts during elongation with the use of DFT simulations.
The conductance exhibits plateaus at integer value times
2e2yh, and the transitions between plateaus can be either
abrupt in connection with structural rearrangements or ex-
tend over a few Å of elongation.
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