394 research outputs found

    Submersion, accidental hypothermia and cardiac arrest, mechanical chest compressions as a bridge to final treatment: a case report

    Get PDF
    Three young men were trapped in a car at the bottom of a canal at two meters depth, after losing control of their vehicle. They were brought up by rescue divers and found in cardiac arrest. One of three patients had return of spontaneous circulation (ROSC), at 47 min after the accident. This sole survivor had the longest submersion time of the three and he received continued mechanical chest compressions during transportation to the hospital. His temperature at admission was 26.9°C, he was rewarmed to 33°C and kept there for 24 h, followed by continued rewarming to normothermia. On day three, he woke up from coma and was discharged from the intensive care unit after one week. At follow-up six months later, he had a complete cerebral recovery but still had myoclonic twitches in the lower extremities. A mechanical device facilitates chest compressions during transportation and may be beneficial as a bridge to final treatment in the hospital. We recommend that comatose patients after submersion, accidental hypothermia and cardiac arrest are treated with mild hypothermia for 12–24 h

    Temporal increase of platelet mitochondrial respiration is negatively associated with clinical outcome in patients with sepsis

    Get PDF
    Introduction: Mitochondrial dysfunction has been suggested as a contributing factor to the pathogenesis of sepsis-induced multiple organ failure. Also, restoration of mitochondrial function, known as mitochondrial biogenesis, has been implicated as a key factor for the recovery of organ function in patients with sepsis. Here we investigated temporal changes in platelet mitochondrial respiratory function in patients with sepsis during the first week after disease onset. Methods: Platelets were isolated from blood samples taken from 18 patients with severe sepsis or septic shock within 48 hours of their admission to the intensive care unit. Subsequent samples were taken on Day 3 to 4 and Day 6 to 7. Eighteen healthy blood donors served as controls. Platelet mitochondrial function was analyzed by high-resolution respirometry. Endogenous respiration of viable, intact platelets suspended in their own plasma or phosphate-buffered saline (PBS) glucose was determined. Further, in order to investigate the role of different dehydrogenases and respiratory complexes as well as to evaluate maximal respiratory activity of the mitochondria, platelets were permeabilized and stimulated with complex-specific substrates and inhibitors. Results: Platelets suspended in their own septic plasma exhibited increased basal non-phosphorylating respiration (state 4) compared to controls and to platelets suspended in PBS glucose. In parallel, there was a substantial increase in respiratory capacity of the electron transfer system from Day 1 to 2 to Day 6 to 7 as well as compared to controls in both intact and permeabilized platelets oxidizing Complex I and/or II-linked substrates. No inhibition of respiratory complexes was detected in septic patients compared to controls. Non-survivors, at 90 days, had a more elevated respiratory capacity at Day 6 to 7 as compared to survivors. Cytochrome c increased over the time interval studied but no change in mitochondrial DNA was detected. Conclusions: The results indicate the presence of a soluble plasma factor in the initial stage of sepsis inducing uncoupling of platelet mitochondria without inhibition of the electron transfer system. The mitochondrial uncoupling was paralleled by a gradual and substantial increase in respiratory capacity. This may reflect a compensatory response to severe sepsis or septic shock, that was most pronounced in non-survivors, likely correlating to the severity of the septic insult

    The brain-enriched microRNA miR-124 in plasma predicts neurological outcome after cardiac arrest

    Get PDF
    Introduction: Early prognostication after successful cardiopulmonary resuscitation is difficult, and there is a need for novel methods to estimate the extent of brain injury and predict outcome. In this study, we evaluated the impact of the cardiac arrest syndrome on the plasma levels of selected tissue-specific microRNAs (miRNAs) and assessed their ability to prognosticate death and neurological disability. Methods: We included 65 patients treated with hypothermia after cardiac arrest in the study. Blood samples were obtained at 24 hours and at 48 hours. For miRNA-screening purposes, custom quantitative polymerase chain reaction (qPCR) panels were first used. Thereafter individual miRNAs were assessed at 48 hours with qPCR. miRNAs that successfully predicted prognosis at 48 hours were further analysed at 24 hours. Outcomes were measured according to the Cerebral Performance Category (CPC) score at 6 months after cardiac arrest and stratified into good (CPC score 1 or 2) or poor (CPC scores 3 to 5). Results: At 48 hours, miR-146a, miR-122, miR-208b, miR-21, miR-9 and miR-128 did not differ between the good and poor neurological outcome groups. In contrast, miR-124 was significantly elevated in patients with poor outcomes compared with those with favourable outcomes (P < 0.0001) at 24 hours and 48 hours after cardiac arrest. Analysis of receiver operating characteristic curves at 24 and 48 hours after cardiac arrest showed areas under the curve of 0.87 (95% confidence interval (CI) = 0.79 to 0.96) and 0.89 (95% CI = 0.80 to 0.97), respectively. Conclusions: The brain-enriched miRNA miR-124 is a promising novel biomarker for prediction of neurological prognosis following cardiac arrest

    Dissection of the Bradyrhizobium japonicum NifA+σ54 regulon, and identification of a ferredoxin gene ( fdxN ) for symbiotic nitrogen fixation

    Get PDF
    Hierarchically organized regulatory proteins form a complex network for expression control of symbiotic and accessory genes in the nitrogen-fixing soybean symbiont Bradyrhizobium japonicum. A genome-wide survey of regulatory interactions was made possible with the design of a custom-made gene chip. Here, we report the first use of the microarray in a comprehensive and complete characterization of the B. japonicum NifA+σ54 regulon which forms an important node in the entire network. Comparative transcript profiles of anaerobically grown wild-type, nifA, and rpoN 1/2 mutant cells were complemented with a position-specific frequency matrix-based search for NifA- and σ54-binding sites plus a simple operon definition. One of the newly identified NifA+σ54-dependent genes, fdxN, encodes a ferredoxin required for efficient symbiotic nitrogen fixation, which makes it a candidate for being a direct electron donor to nitrogenase. The fdxN gene has an unconventional, albeit functional σ54 promoter with the dinucleotide GA instead of the consensus GC motif at position −12. A GC-containing mutant promoter and the atypical GA-containing promoter of the wild type were disparately activated. Expression analyses were also carried out with two other NifA+σ54 targets (ectC; ahpC). Incidentally, the tiling-like design of the microarray has helped to arrive at completely revised annotations of the ectC- and ahpC-upstream DNA regions, which are now compatible with promoter locations. Taken together, the approaches used here led to a substantial expansion of the NifA+σ54 regulon size, culminating in a total of 65 genes for nitrogen fixation and diverse other processe
    • …
    corecore