11,791 research outputs found

    A global low order spectral model designed for climate sensitivity studies

    Get PDF
    A two level, global, spectral model using pressure as a vertical coordinate is developed. The system of equations describing the model is nonlinear and quasi-geostrophic. A moisture budget is calculated in the lower layer only with moist convective adjustment between the two layers. The mechanical forcing of topography is introduced as a lower boundary vertical velocity. Solar forcing is specified assuming a daily mean zenith angle. On land and sea ice surfaces a steady state thermal energy equation is solved to calculate the surface temperature. Over the oceans the sea surface temperatures are prescribed from the climatological average of January. The model is integrated to simulate the January climate

    Structure and magnetic interactions in the solid solution Ba3-xSrxCr2O8

    Full text link
    Solid solutions of the magnetic insulators Ba3Cr2O8 and Sr3Cr2O8 (Ba3-xSrxCr2O8) have been prepared in polycrystalline form for the first time. Single crys- talline material was obtained using a mirror image floating zone technique. X-ray diffraction data taken at room temperature indicate that the space group of Ba3-xSrxCr2O8 remains unchanged for all values of x, while the cell parameters depend on the chemical composition, as expected. Magnetization data, measured from 300 K down to 2 K, suggests that the interaction constant Jd within the Cr5+ dimers varies in a peculiar way as a function of x, starting at Jd = 25K for x = 0, then first slightly dropping to Jd = 18K for x = 0.75, before reaching Jd = 62K for x = 3

    An LED-based Flasher System for VERITAS

    Full text link
    We describe a flasher system designed for use in monitoring the gains of the photomultiplier tubes used in the VERITAS gamma-ray telescopes. This system uses blue light-emitting diodes (LEDs) so it can be operated at much higher rates than a traditional laser-based system. Calibration information can be obtained with better statistical precision with reduced loss of observing time. The LEDs are also much less expensive than a laser. The design features of the new system are presented, along with measurements made with a prototype mounted on one of the VERITAS telescopes.Comment: Accepted for publication in Nuclear Instruments and Methods in Physics Research

    Evolution of the bilayer nu = 1 quantum Hall state under charge imbalance

    Full text link
    We use high-mobility bilayer hole systems with negligible tunneling to examine how the bilayer nu = 1 quantum Hall state evolves as charge is transferred from one layer to the other at constant total density. We map bilayer nu = 1 state stability versus imbalance for five total densities spanning the range from strongly interlayer coherent to incoherent. We observe competition between single-layer correlations and interlayer coherence. Most significantly, we find that bilayer systems that are incoherent at balance can develop spontaneous interlayer coherence with imbalance, in agreement with recent theoretical predictions.Comment: 4 pages, 4 figure

    Simulations of a Scintillator Compton Gamma Imager for Safety and Security

    Full text link
    We are designing an all-scintillator Compton gamma imager for use in security investigations and remediation actions involving radioactive threat material. To satisfy requirements for a rugged and portable instrument, we have chosen solid scintillator for the active volumes of both the scatter and absorber detectors. Using the BEAMnrc/EGSnrc Monte Carlo simulation package, we have constructed models using four different materials for the scatter detector: LaBr_3, NaI, CaF_2 and PVT. We have compared the detector performances using angular resolution, efficiency, and image resolution. We find that while PVT provides worse performance than that of the detectors based entirely on inorganic scintillators, all of the materials investigated for the scatter detector have the potential to provide performance adequate for our purposes.Comment: Revised text and figures, Presented at SORMA West 2008, Published in IEEE Transactions on Nuclear Scienc

    Effects of Force Level and Hand Dominance on Bilateral Transfer of a Fine Motor Skill

    Get PDF
    Our research is about bilateral transfer, a concept in motor learning where skills learned by one limb are "transferred", allowing the opposite limb to benefit from what was learned by the first limb. Previous research into bilateral transfer has raised questions about whether specific aspects of motor coordination are or are not transferred. We wanted to see whether learning to control pinch force by the thumb and index finger is transferable, and if it is, whether the learning transfers equally from either hand. We also want to look into the effects of different force levels on the degree of transfer. We designed a task using a program that takes force levels as inputs and has the participant trace shapes on a screen. By having participants perform with one hand, then practice with the other, and finally perform again with the initial hand, we can measure transfer as the difference in performance before and after practice with the other hand.Kinesiology and Health Educatio
    • …
    corecore