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Abstract

A two-level, global, spectral model using pressure as a vertical
t

coordinate is developed. The system of equations describing the model

is nonlinear and quasi -geustrophic (linear balance) (Lorenz, 1960). A

moisture budget is calculated in the lower layer only with moist convec-

tive adjustment between the two layers.	 The mechanical forcing of

topography is introduced as a lower boundary vertical velocity. Solar

forcing is specified assuming a daily mean zenith angle. On land and

sea ice surfaces a steady state thermal energy equation is solved to

calculate the surface temperature.	 Over the oceans the sea surface

temperatures are prescribed from the climatological average of January.
s

The model is integrated to simulate the January climate.
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1. Introduction

Numerical meilnls are an important tool for testing many hypotheses

concerning climate variability. During recent years a wide variety of

models have been developed. Complexity of such models ranges between

the simple energy balance models (e.g. Budyko, 1969; Sellers, 1973) and

the multi-level primitive equation models (e.g. Manabe of al., 1965;

Kasahara and Washington, 1971; Corby et al., 1977; Otto-Bleisner et al.,

1982).

Intermediate complexity models (Kikuchi, 	 1969;	 Salmon and

Hendershott, 1976; Held and Suarez, 1978), with reasonable dynamical and

physical simplifications, can simulate some aspects of the largest

scales of atmospheric motion. The computational economy of such models

provides the opportunity for longer periods of simulation and for more

extensive testing of physical and dynamical processes. Moreover, such

models can provide a first insight on atmospheric problems before using
J

the complicated general circulation models. 	 Also, intermediate com-

plexity models are useful for interpreting the results of more compli-

cated models (Chervin, et al., 1980).

In this study a two-level spectral model using pressure as a ver-

tical coordinate is developed. The system of equations describing the

model is quasi-geostrophic in linear balance (Lorenz, 1960). The choice

of global rather than hemispheric model is due to the fact that the

latter is believed to excite anomalous Rossby waves (Roads and

Somerville, 1982) which could be critical when dealing with climate

sensitivity studies.

The physical forcing is parameterized with reasonable simplicity, to

i
include the major forcing mechanisms which develop the large scale

t' 
tF	
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atmospheric circulation. The solar energy is specified as a function of

latitude and time assuming a daily mean zenith angle (Wotherald and

Manabe, 1972). The amount of solar energy absorbed by the moda"t

atmosphere and the earth's surface is calculated using a formula givan

by Kubota (1972). Longwave radiation forcing of the two layers and the

	

R
	

surface are calculated using climatological relative humidity and sur-

face temperature. The mechanical forcieig of topography is introduced in

the form of a lower boundary vertical velocity. The differential diaba-

tic heating due to the distribution of land and sea also is included.

The sea surface temperatures are specified using the observed January

mean values. On continents and ice surfaces the thermal energy balance

equation is solved for the surface temperature.

.a
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2. Governing Equations

s,	
The dry flat version of the model structure is basically the same

as that given by Lorenz (1960) which is a two level, linear balance

model using pressure as a vertical coordinate. The system of equations

describing the model retains the nonlinear interactions between depen-

dent variables. The equations representing the model are the vorticity

equation, the thermodynamic equation, the thermal wind equation, the

continuity equation and the water vapor equation. The latter is cal-

culated at the lower layer only. Static stability is a variable in the

model's atmosphere and the horizontal wind has both the divergent and

nondivergent components.

2.1 Vertical structure of the model (pressure coordinate)

The model's atmosphere is represented by two levels; 750 mb (2=1)

and 250 mb (2=3) (Fig. 1).	 The vertically averaged values are cal-

culated in the intermediate level 500 mb (2=2). The lower boundary is
	 j

at the 1000 mb (2=0).

For a certain level 2 the set of equations describing the models

atmosphere is given by;

y2 = kX v^2 + ax,,
	

(2.1)

the vorticity equation

aw

at V2^ = -J(02 , V202+f) - vx2 • Vf + f !wk + ( F h )2 + (F v )2 , (2.2)

the thermodynamic energy equation

K

ate 
= -J(^2,02)-Ox2-vet-w2 - + (2)	 — + (wh)2+(Wv)2> (2.3)

iFZt- 	 ^



the thermal wind equation

Cp ( PO ) K VZ OR = -V• aK ( Mid
Op

x^
}

I (2.4)

5

a.

the continuity equation

R
Ow
a+V2Xe =0,
P

and the water vapor equation

PA = - V-(_v Iq) + E - Pc + (Sh)1.

(2.5)

(2.6)

i
^j

where v_R = (uR ,vA ) is the horizontal wind vector, w e the vertical press

sure velocity, f is the Coriolis parameter, tPR is the stream function,

XR is the velocity potential, 0  
is the potential temperature, q is the

water vapor mixing ratio, p  is the pressure, p0 is the lower boundary

pressure level (=_ 1000 mb), P C is the precipitation rate, E is the

surface evaporation rate, QR/cP is the diabatic heating rate, c  is the

specific heat at constant pressure, K = R/cP , R is the gas constant, Fh,

Wh , S  are the horizontal diffusion of momentum, heat and moisture

respectively, (Fv )R and (Wv )R are the vertical diffusion of momentum and 	 j

{
heat, respectively.	 9

Equations (2.1)-(2.6) are six equations in the 14 unknowns y., Xe,

OR , Wej q , 1e, QR. , (FO V ( F v ) R , (Wh )R . ( Wv ) R , (S h ) 1 , E and PC . The

evaporation rate, E, is a result of the moisture vertical diffusion from

the surface while, the precipitation P C is calculated as the excess of

super saturated moisture in the lower layer. In order to close the set
i

(2.1)-(2.6) the diabatic heating and the diffusion terms need to be

parameterized in terms of the dependent variables.

t

r
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2.2 Horizontal diffusion
I	 ,

From the numerical stability view point the diffusive terms are not

required when using the spectral method. There is a requirement to

inhibit spurious growth of amplitude at scales close to the point of

truncation due to spectral blocking (Puri and Bourke, 1974). At a level

,2 thj horizontal diffusion of momentum, heat and moisture is param-

eterized, respectively.

(Fh )R = kh 92 (02$R + 2 ez), 	 (2.7)

(WJe = k  vfe el	 (2.8)

(Sh)Je = k  02q ,	 (2.9)

where k  is the lateral eddy diffusion coefficient. The value of k  is

taken to be 1.0x10+5 m= sec-1 (Phillips, 1956). The last term to the

right side of (2.7) is due to the effect of spherical earth.
r

2.3 Vertical diffusion

The planetary boundary layer is a transition layer in the atmo-

sphere wh"ch separates between the earth surface and the large scale 	

1
atmospheric motions.	 In this layer, which is approximately 1 km, the	 i

1

fluxes are mainly a consequence of small-scale turbulence and convec-

tion. In a large scale model it is necessary to utilize the effects of

the boundary layer to simulate a correct phase and amplitude of the

ultra-long waves. Parameterized bulk formulas are used here to calcu-

late the friction dissipation, sensible h-at flux and evaporation rate.

I
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2.3.1 Parameterization of frictional dissipation

The two assumptions used for parameterizing the frictional dissipa-

tion are as follows (Lorenz, 1961):

a) Surface frictional drag is proportional to the flow in the

surface layer,

b) Friction between the two layers is proportional to the dif-

ference between the flow of the two layers.

The friction dissipation, (F v )R , is given by

a rR
(F v)g = - 9 

ap	
(2.10)

where g is the acceleration of gravity and r
Je 

is the rotational stress

at level R.

Using the above two assumptions we can have

r0 = 9 ks V2$0,	 (2.11)	
fl

and

r2 = 9 2 k V2 (t3 - tP1),	 (2.12)

t

where Ap(=p0/2) is the pressure difference between the upper and lower

levels, and qj0 is the surface stream function calcualted by linear

extrapolation with respect to height (Salmon and Hendershott, 1976). k 

and 2k  are the coefficients of friction at the underlying surface and

the surface separating the two layers respectively.	 k  is given the

value 4x10-6 sec - 1 (Kikuchi, 1969), and k  is given the value 5x10-7

sec-1 (Charney, 1959).

Using (2.10), (2.11) and (2.12), and assuming that r 4 at the top of

the atmosphere is equal to zero, we can find the expressions for the

friction dissipation at the two levels,
1	 `''S
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(Fv ) _ - ksV2 1p0 + 2kdV2(tP3 - $l), 	 (2.13)

1

(F 
V ) = - 2kdV2 ( q, 3 - $l),	 (2.14)

3

2.3.2 Parameterization of sensible heat

Over all surfaces, whether bare land, ice or water, the vertical

(turbulent) flux of sensible heat Q s is determined using the parameteri-

zation

Qs = p  c  c  Ivol (T
g - Ta),	 (2.15)

where p  is the surface air density, T  is the ground or surface tem-

perature (prescribed over the oceans), T  the surface air temperature,

c  is the drag coefficient and lv o lis the absolute value of the surface

wind.

The surface air temperature, T a . is extrapolated from the tem-

perature values at 250 mb and 750 mb with respect to logarithm of the

pressure level,

(Ta - T1)/(Ta - T3 ) = 2n(pO/p l )/2 n( pO/p3 ) = .207	 (2.16)

The drag coefficient, c d , is assumed constant taken to be .004 and .001

over land and water surfaces respectively. By assuming these constant

values for the drag coefficient we neglected its possible variations

with the surface wind speed and the terrain height. The absolute value

of the surface wind, lvo l, is taken from the rotational part of the 750

mb wind. A minimum value is specified by 3 m sec -1 to avoid unrealistic

high surface temperatures (Holloway and Manabe, 1971).
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J
2.3.3 Parameterization of surface evaporation rate

The surface evaporation rate, E, is parameterized in the model as

E = p  c  N o I GW ( h*g s ( T9 ) - h  gs(Ta))I
	 (2.17)

where gs (T9 ) is the saturation mixing ratio using the surface tempera-

ture, gs (Ta ) the saturation mixing ratio at 1000 mb. The saturation

vapor pressure is calculated using a formula given by Bolton (1980).

The ground wetness parameter GW is a nondimensional measure of the

surface water available for evaporation and varies between 0 and 1.

Over water and ice it is taken as unity, whereas over land surfaces it

is taken as .25.	 The relative humidity in the atmosphere near the

surface, h s , is given by h s = .5 q(T1)/gs(T1)+.5, where q(T 1 ) is the

mixing ratio in the lower layer.	 h * is simply set equal to 1; the

surface is assumed to be everywhere saturated (the "swamp" lower boun-

dary condition).

2.4 Mechanical forcing of topography

At the top of the model's atmosphere (p=0) the vertical pressure

velocity w4 is taken to be zero. At the lower boundary (1000 nib) w0

introduce the mechanical effect of topography, the kinematic condition

I
w0 = d ($1 1 Pg ),	 (2.18)

is used. Here P 9 is the pressure at the terrain height. When computing

P 9 , the continental elevations smoothed over 5° latitude by 5 0 longitude

are used (Berkofsky and Berton, 1955) assuming a standard atmosphere.

In this relation the advection by the divergent part of the horizontal

wind is ignored.
;l

Integration of the continuity equation (2.5) over the depth of the
'l

k

model's atmosphere and through its two layers gives the following pres-

sure velocities

It
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WO = - Gp72 (X 1 + X 3 ),	 (2.19)

W1 = - 2 V2 (2x 3 + x l >.	 (2.20)

and

W3 = ' 2 02 (X 3 )•	 (2.21)

It is convenient to introduce the new variable X  such that

WO = - Ap V2X0'	 (2.22)

From (2.19) and (2.22) we get

XO = X I + X3	 (2.23)
I

The low order truncation used in the model (truncate at either zonal	 J
i,

wave number 9 or wave number 15) is considered as a further filter to	 1

satisfy the quasi-geostrophic approximation, where the vertical velocity 	
0

should be three orders of magnitude less than the horizontal wind

(Haltiner, 1971).

2.5 The model

It is convenient to use as dependent variables the mean potential

temperature 6 and the static stability a, the stream functions qj and t

for the mean wind and wind shear, so that 0 3 = O+a, 0 1 = 0-a, 1P3 = qJ+i,

*1 = $-c, X 1 = X. Using (2.7) - (2.9), (2.13) and (2.14), the governing

equations (2.1) - (2.6) become

k

C) 
(V2 p) = - J(ip,V2tp+f)- J(t,V2L)-hV•(fVXO)-k5V24, +k h (V4 tp+2Va2").	 (2.24)



p K

Q3 + CP1)

I averaged

p0 K
Q3 - (—)

Pi

Ql]/cp

iiabatic heating per unit mass, and

Q17/cp

f

k
at(VzT) = -J(tU,V2T)-J(T,V2q,+f)+V•(fVX)-hV•(fVXO) E v2tp0-2kdVZT

+ k (V°T + a2 Vz T),	 (2.25)

JO	 -
JAV,^^)-J(T,a) +V•(uV 	 h(VX • VO+V • VO+3uV1	+k V10+at =	 X)-	 0	 x0	 XO) h	 Q,	 (2.26)

aor
8t = -J($,a)-J( T, e)+VX •Ve-h(VX0 •VO+VX0 'Va-oV2 X0 )+khVza+Q 	 (2.27)

aq

at _ -
V • (kxv(tp- T)+VX)q)+E-Pc+khVz q,	 (2.28)

b c  ze = V • (fVT),	 (2.29)

and

ApVZXO = - J ( IP- T , Pg ),	 (2.30)

t'O = ip-1.6 T	 (2.31)

where

K	 1 K
b = ;1[(2 )[C

3
4) - C4) ] _ .124,

p0 K
Q = hC(P)

3

is the verticall

p0 K

Q = hC(P)
3

is the difference in the diabatic heating per unit mass between the two

layers.

The above system is a set of eight equations with eight unknowns
°I

T, e, a, X, X01 410, q. This system will be transformed to the spectral

space using the spherical harmonics as basis functions.
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3. Thermal Forcing of the Earth-Atmosphere System

Mechanisms that force the model's atmosphere are either external or

internal. The upper layer is heated by short- and longwave radiation,

i
by the lateral diffusion of heat, and by the heat released by a con-

vective adjustment. The lower layer is heated by short- and longwave

ce !	 radiation, lateral diffusion, sensible heat flux from the surface and by

latent heat release, and is cooled by the heat transferred upward by the

convective adjustment.	 Evaporation provides a source of water vapor

which is also diffused and lost through precipitation.

3.1 Solar radiation
t

The incoming solar radiation at the top of the model's atmosphere

is calculated as a function of daily mean zenith angle (Wetherald and

Manabe, 1972). Diurnal variation of the solar energy is excluded. The

mean zenith angle z is given by

cos z = sino sin6 + (coso cosh sin Ho )/Ho ,	 (3.1)

where 0 is the latitude angle, 6 is the declination angle, and H o is the

hour angle given by

Ho = cos -1 (-tano tan6),	 (3.2)

6 = 23.45 sin 2n N360
	

(3.3)

N is the number of days measured from day 0 at OOZ at the first of

January.

The incoming solar radiation at the top of the atmosphere is given

by
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Sm = S HoIn,	 (3.4)

S =	 (em ) 2 Sc cosz,	 - 6 < 2
s

0	 - 6 > Z

Sc is the solar constant taken to be 1400 w/m 2 . Recent measurements of

solar irradiance from earth orbiting satellites (Smith, et al., 1982)

give an average value about 1375 w/m 2 . This value is about 1.8% less

than the assumed value. Parameters a s and am are the instantaneous and

mean distance of the earth from the sun, respectively, 	 }

es = 1 + .01676 sin 2n H) .	 (3.5)	 1	 `,
m

The amount of solar radiation absorbed by the earth's atmosphere system

is calculated using a formulae given by Kubota (1972). The solar radi-

ation absorbed by the atmosphere S is given byr
S r = x(1-ra )S,,	 (3.6)

where x is the absorptivity of the atmosphere taken to be constant = 	 f
1

.26.	 The albedo of the atmosphere, r a , is calculated taking into con- 	 ^t

sideration the observed mean zonal amount of clouds (Berliand, 1960),

w

where p is a constant equal to .38, c is the amount of low and medium
I

clouds in tenths of sky cover.	 Although the model has no explicit 	 i

modulation of the clouds, they are implicitly included through the
I

atmospheric albedo which affects the solar energy budget. The parameter

a is a function of latitude.

0
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The not solar energy absorbed by the earth's surface is given by

S s = (1-0 (1-r a ) (1-rs )S„,
	 (3.8)

where r  is the January zonal average albedo of the earth's surface

}	 (oceans are not included). The surface albodos are categorized as areas

of permanent ice (albodo = .8), partial snow in middle and low latitudes

(albodo = .2 to .3), and dense forests (albedo = .15). The values of

different parameters used for the January solar radiative calculation

are shown in Table 1.

The above formulae give a global average planetary albedo Ly 34%.

Stephens et al., (1981), using satellite observations, estimated the
5

global average planetary albedo for January to be 31%. Fig. 2 reveals
t-	 d

the calculated solar radiation absorbed by the atmosphere and the earths

surface at the first of January,
a

'	 3.2 Longwave radiation

The calculation of the longwave radiative cooling of the atmosphere

makes use of a parameterization of the outgoing infrared radiation

(Thompson and Warren, 1982). The parameterization comprises clear sky.
.r`

Only two parameters are used to predict clear-sky outgoing infrared

C

irradiance:	 surface air temperature (Ta ) and climatological vertical

mean relative humidity (RH).

The clear sky outgoing infrared irradiance at the top of the

jatmosphere is given by

L4 = a  + a 1 
T a + a 2 Ta e + a3Taa ,	 (3.9)

where

an = b
On + bin(RH) + b2n(RH)Z, n = 0, 1, 2, 3. 	 (3.10)

s^	 w
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The values of the b's are given by,

b00 = 2.34414 x 102,

b10 = -3.47968 x 101,

b20 = 1.02790 x 101,

b01 = 2.60065 x 10°,

b11 = -1.62064 x 10
0

,

b21 = 6.34856 x 10 1,

b02 = 4.40272 x 10-3,

b12 = -2.26092 x 10-2,

b22 = 1.12265 x 10-2,

b03 = -2.05237 x 10-5,

b13 = -9.670 x 10- 5,

b23 = 5.62925 x 10-5 .	 1

r
The values of RH used for the January simulation are shown in Table 1.

These values are interpolated f--+m the values given by Thompson and

Warren (1982).

i
The model's longwave emissivity is divided between the upper and

lower layer by fraction .4 and .6 respectively. The net longwave ir-

radiance at the earth's surface (Deardorff, 1978) is given by

L0 = e 9 (BT 94 - YBTa4 )	 (3.11)

where B is the Stephen Boltzman constant, c g is the emissivity of the

ground surface in the infrared taken to be equal to .95, and y is the

parameterization for the effective emissivity of the air whisk is cal-

culated from the relation r
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Table 1

Parameters Used for Solar and Longwave Radiation Calculations

Parameter Clouds Atmospheric Surface Average rela-

Latitude c Albedo (r 
a ) Albedo (rs ) tive humidity

(RH)

84.1 0.35 0.096 0.8 .48

76.5 0.41 0.129 0.8 .53

68.9 0.48 0.179 0.8 .58

61.3 0.54 0.305 0.4 .6

53.6 0.56 0.343 0.3 .59
i

a

R	 45.9 0.54 0.316 0.2 .58

38.3 0.45 0.248 0.2 .54 j

f
30.6 0.37 01185 0.18 .46

23. 0.28 0.131 0.15 .41

15.3 0.29 0.145 0.14 .38^

7.7 0.32 0.167 0.14 .43 }^

0. 0.38 0.207 0.14 .57 ;.

-7.7 0.36 0.193 0.12 .53

-15.3 0.35 0.183 0.1 .46

-23.0 0.34 0.166 0.1 .38 j	 II

-30.6 0.36 0.179 0.1 .35

-38.3 0.42 0.227 0.1 .4

-45.9 0.51 0.293 0.1 .46

-53.6 0.60 0.377 0.5 .50

-61.3 0.62 0.369 0.5 .53 i

I
^	 -68.9 0.55 0.8 0.8 .51

-76.5 0.47 0.8 0.8 .46

-84.1 0.40 0.8 0.8 .41
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y = (c + (1-c)x.67x(1670 ga),08)
	

(3.12)

here the value of c, the cloud fraction, is assumed as a global average

equal to .5 and q  is the water vapor mixing ratio near the surface.

3.3 Large scale precipitation and latent heat release

The model has a moisture content in the lower layer (level 1) only.

The procedure for large scale precipitation and convective adjustment

starts after completing each time step of integration. The mixing ratio

at each grid point of the 750 mb level is examined for super-saturation.

If q(T1 ) < yg s (T1 ), then no precipitation or convective adjustment

takes place. The parameter y represents a specified critical relative

humidity (), = .85 in this study). T1 is the temperature at any grid

point in level 1, and q and q  are the mixing ratio and the saturation

mixing ratio, respectively,

On the other hand, if q(T1 ) ? yg s (T 1 ), condensation occurs with the

associated latent heat release. The temperature T 1 will be agumented by

an increment AT, such that

AT = c ( q (T 1 ) - qs (T + OT)),	 (3.13)

p

where q'
s
 is the new saturation mixing ratio at the temperature T+AT,

8q

q s — yq s + y 8Ts AT.
	 (3.14)

Using the Clausius-Clapeyron equation, (3.14) takes the form

L

q s = Yq s + Y Lq AT	 (3.15)
R T2
v

where R  is the water vapor gas constant and L is the latent heat of

condensation.	 The rate of condensation (precipitation) per unit mass,

1' c , is given by

i

AL
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Pc = ( q - qs)/At,	 (3.16)

where At is the time stain of integration. 	 Using (3.13), (3.15) and

(3.16)

q-Ygs	 L2
Pc = At (1 + cc R T2 'IS)(3. 17)

p v 1

It is clear that a relevant form of (3.13) is

AT =	 Pc At.	 (3.18)

p

After the release of latent heat in the lower layer as a result of

the condensation of water vapor, the atmosphere is tested to see if

convective adjustment is required. Convection is assumed to develop if

the atmosphere is unstable relative to the moist adiabatic lapse rate

r S , then the temperature of the two levels is adjusted to stabilize the

model's atmosphere by cooling the lower layer and warming the upper

layer, with the vertically averaged temperature conserved. 	 The new

lapse rate is the same as fs.

3.4 Net heating of the Earth-Atmosphere system

The way in which the model responds to heating and how it simulates
^I

the observed atmospheric heat balance are fundamental aspects of its

ability to reproduce the seasonal distributions of global climate. from

the previous discussions we can calculate the different partitions of

the heating function.

Of basic importance is the net radiation at the top of the atmo-

sphere which represents the net gain or loss of both solar and longwave

radiative energy this may be written as	 l

N^ = S^ - raS^ - r s (1 - x) (1 - r a ) SW - L4 .	 (3.19)	
i4

4r'.
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On the right side of (3.19) the second and third terms represent the

t'
amount of solar radiation reflected by the atmosphere and the earth's

i	 surface, respectively, while the last term is the not outgoing longwave

radiation at the top of the model atmosphere.

The net radiation at the earth's surface N 4 may be Written using

(3.8) and (3.11) as

N s = (1-x) (1-r a ) (1-r s )SM - L0 .	 (3.20)

The net surface heating, B s , is given by

B s = Ns - Q s - LE,	 (3.21)

It is assumed that B s=O, and the resulting equation is used to determine

the surface ground temperature T g. Over the water surfaces, on the

other hand, the surface temperature is assigned and 8 s is not required

to be zero.

The net atmospheric heating may be considered by combining the net

radiation at the top of the atmosphere (3.19), the net surface heat flux

(3.21), and the internal release of latent heat accompanying condensa-

tion (here precipitation).	 Recognizing that the surface evaporation

removes heat from the water source and therefore it is not a part of the

atmospheric heating, we may write the net heating of the atmosphere, 8a'

as

B  = x(l-ra ) S. + LO - L4 + Q 5 + LP c .	 (3.22)

This expression for B  is also equal to the sum of the atmospheric

storage of total energy and the divergence of the atmospheric total

energy flux.

Finally, we may combine the net surface heating (3.21) and the net

atmospheric heating (3.22) in order to get the net heating of the

^(^
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combined earth-atmosphere system. This heating is given by

!+-	 Bea = N
„ + L( p c-E)	 (3.23)

This may be regarded as the balance of total energy in the earth-
ti.

#;-^	 atmosphere system.

3.5 Surface temperature

The surface temperature, T9 , is used to calculate the bulk formulae

(2.15) and (2.17). As mentioned before the surface temperatures of the

water are specified as the climatological values of January. On land

and ice surfaces the temperature is calculated from the surface thermal

energy balance (3.21) assuming negligible heat capacity of the earth

(B s=O) (Holloway and Manabe, 1971). Over oceanic locations assumed to

be covered with ice, B s=O is also assumed, but with a term representing

the heat conduction through the ice (depending on the difference between

the ice surface temperature and the freezing paint of water) added to

the right hand side of (3.21). Over all ice and snow covered surfaces

the computed surface temperature is not permitted to rise above 0°C. In

such a case the excess heat is assumed to be used in melting. Equation

(3.21) can take the form

B s = N s -Q s - LE + I(T 9 - 271.2).	 (3.24)

i
The last term on the right hand side represent the effect of heat con-

"`	 duction from unfrozen water below sea ice in the polar latitudes of the

Northern Hemisphere. Assuming the thermal conductivity of ice, T c = 2.1

J M- 1 00 sec-1 , the temperature of the underlying water is 271.2°K and

the ice layer thickness d = 2 m, then the constant I=T c /d=1.05 w/mz

°K 1 . This term is needed to prevent unrealistically cold temperatures

in the Northern Hemisphere polar regions during winter.

^0

1r
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Appendix I explains the method of solving (3.24). 	 The Newton

iteration method is used and is found to be efficient in solving such

type of equations.

6

tl

I

!i
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4. Numerical Simulation

The conventional spectral method is Galerkin's method based on ex-

panding the different variables w;th a truncated series of surface

spherical harmonics. The method is used for the numerical integration

of the hydrodynamical equations. Two types of expansion are often used,

the triangular and rhomboidal truncations. The advantages of the spec-

tral method over the usual finite difference methods are summarized as

follows (Machenhauer, 1974):

1) The nonlinear terms are alias free, which prohibits the exis-

tence of the nonlinear instability described by Phillips (1959).

2) Quadratic area integral invariants like the kinetic energy and

enthalpy also are invariant for the truncated system, since the

error fields are orthogonal to the variables.

3) Linear terms are computed without any truncation error.

4) No special treatment is required for dealing with the polar

region when using the vorticity and divergence fields. By con-

trast, in the finite difference method the horizontal wind com-

ponents are discontinuous at the pole.

5) The friction term of the finite difference methods is necessary

to prevent aliasing instability. It also is necessary for the

removal of energy from the shortwave end of the spectrum. When

using the spectral method, it also is important to prevent blocking

of energy at the highest wave numbers retained, but in this case

the purpose is only a simulation of the effect of the small scales

not retained in the representation.

go
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A	 study	 by	 Hoskins	 and	 Simmons	 (1974) compared finite difference

and spectral	 models.	 The study showed that no one method has a super-

iority in all	 respects.	 In comparison with the finite difference model,

the spectral	 model	 gave much improved solutions	 for the amplitudes and

phases of the predicted waves. 	 On the other hand, the finite difference

model gave a more accurate representation of the frontal systems.

It is of interest to compare the two types of truncation mentioned

before,	 namely the rhomboidal 	 and triangular.	 For the same zonal wave

number	 truncation,	 the	 triangular	 representation	 has	 fewer	 degrees of
J
}

freedom than the rhomboidal	 and hence requires less computing time. 	 If

we retain the same degrees of freedom in both the triangular and rhom-

boidal	 truncations,	 the former will	 be more appropriate for mean zonal
i;.

fields	 than	 the	 latter.	 At	 the	 same	 time	 the	 rhomboidal	 truncation
t;
tt
f

could introduce higher wave numbers, 	 namely the eddies. 	 The same study

by	 Hoskins	 and	 Simmons	 (1974)	 did not give a definite conclusion con- 1¢
h , ll

cerning the comparison between rhomboidal and triangular truncation.	 In

some experiments the rhomboidal truncation gave a more accurate approxi-

mation to the solution than the triangular truncation. 	 In other experi-

ments	 the	 triangular	 truncation	 gave	 a	 more	 efficient	 description	 of

Rossby wave instability.
r,

li,

In	 this	 study we	 used the rhomboidal	 truncation since it gives a ill

comparable resolution in both horizontal directions.

4.1	 Spectral method

The dependent variables tp, 	 t,	 a, Xe. 0, a, q are expanded in trun-
1

j!

cated series of the form {i

M	 Iml+j a,

XCN>^) =	 E	 F	 (^	 Y^ (NIX)	 (4.1)

m=-M	 n= Im o
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where X is any variable being studied, Xn are harmonic coefficients, h

is longitude, p is the sine of latitude, m is the zonal wavenumber, n is

the degree of a spherical harmonic coihponent, n- Iml is a meridional

wavenumber in the sense that there are n-lml zero crossings of Yn

between equator and pole, M is the highest zonal wave number retained in

the truncated series, and J is the highest value of n- lm l retained in

the truncated series. Yn are spherical harmonic functions defined by

Yn = Pn(N) eimA
	

(4.2)

Pn are the Associated Legendre functions of the first kind

m	 2n+1	 n- m ! ^` (1-uz)^nl /2 do+lml	 nPn (u) _ ( 4n	 (n+ m)! ) 2n n'	 dpn+Iml (F+ z - 1)	 (4. 3)

A spherical harmonic coefficient is defined by

2n +1

Xn = An f f X Yn dNdT<4.4)0	 -1

	

^	 w

	where Yn is 	 the complex conjugate of YM.

Yn are orthogonal over the surface of the sphere, i.e.

1	 2n +1 m mi	 1 for (m1 , n 1 ) = (m,n)

4n f	 f1 Y  Ynl dpd^	 0 for (m1 ,n 1 ) # (m,n) '	
(4.5)

and are eigenfunctions of the Laplacian operator

V2Yn = - n 
a21 

Yn,	 (4.6)

where a is the radius of the sphere. The coefficients for negative and

positive values of m are related in the following way:

X nm = (-1)m X 

t

z

F

i
r

i
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(4p

c

,r
	 Nonlinear terms are transformed from grid point space to spectral space

using the full transform method (Machenhauer and Rasmussen, 1972;

Orszag, 1970). The method is computationally highly effictient relative

to the interaction coefficient method for J > 9.

	

I
	

The procedure for calculating the spectral coefficients of the

nonlinear terms using the full transform method is as follows:
r,

1) Calculate the nonlinear terms at each grid point in physical

space.

2) Transform to the Fourier space at each Gaussian latitude, using

fast Fourier transform routines.

3) Transform to the spectral space using the Gaussian quadrature

formula.

Highly nonlinear terms, like diabatic heating terms cause problems

in finding their spectral transforms. This problem is resolved by using

the full transform method. They are calculated in physical space, then

added to the nonlinear dynamic terms, and the whole sum is transformed

to spectral space.

To guarantee an alias-free solution, there are two conditions that

must be fulfilled (Machenhauer and Rasmussen, 1972). These conditions

specify the minimum number of zonal grid points, N 9 , and the minimum

number of Gaussian latitudes, I s , on the sphere:

r,

	

I
	 N > 3 M + 1

9

I > M + 3/2 J.r-
s

In case of the rhomboidal truncation (M = J) used here, the latter

condition is

I > 5/2 M.
s

Ij'

u

r,'ir
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For the simulation with wavenumber 9, N g = 32 and I s = 23.	 On the other

K	 t hand,	 for wave number 15 simulation, Ng z 48 and I s = 40.

t
To	 transform	 the	 system	 (2.24 -	 2.31)	 to	 its spectral	 form,	 each

f variable	 is	 expanded	 using	 (4.1).	 The	 resulting equations	 are	 mul-
*

tiplied	 by	 Y^	 and	 integration of both sides 	 is performed using aqua-

tions	 (4.4 -	 4.6).	 The	 nonlinear terms are calculated using the trans-.?.'

form method mentioned before.

The system of equations in its spectral 	 form is given by

4m
	 = -	 a2	 [-J(r4 V2gr) - J(Z,V2T ))m 

+	 20m
i	 tiIm	-

n	 n(n+l)	 n	 n(n+l) n

+ nnl 
Dn(XO ) n - 1 )0 (n+1 D n

+l(XO )n+1
(4.7)

F
r

- 
k 	 m	 n+1	 m	 2k 	 m

( VO ) n - Kh n	 ^n^n +t. 2	 a2	 az

t o - n(n+1)	 ,V2U) - J ( rUr ort ))}^ + n(n+1)i i
n -

0 
(n+2 

Dm (X )m + n-1 Dm (X ) m )n+1 n+1 O n+1	 n n o n-1

+..	
k	 2k

+ Zs (tPO )m - 2kd t^ - kh n az l t^ + 
a2h 

t^

	

n+2 m	 m + (n-1) Dm m

	

+ 2S2 
(n+l 

Dm 	 Xn+1	 n	 n Xn

If
I

(4.8)

F'4

^i

0^ _ [ -J ( gl ,e) - J(i,o) - h(VX O • V0 + VX 0 '	 + 3aV2X0)}n

(4.9)

n az l k  0m + (V• (oVX))n + Q 

i
jd

!.	 it

k • 3 _{

.r+

d	 I

,I
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a
n = {- J( q, ,a) - J(T,o) - h(VX 0 • v0 + VX 0 • va - av2XO))n

(4.10)

+ (vX •v0)n - n az1 k^r an + Qn

qn = - (V-T) r Vx)q))n - n a 1 kh qn + (E-P c )n, (4.11)

b c Om = 20(' Dm 
Tm + n-1 

Om ,m_ ),	 (4,12)p
n	 n+1 n+1 n+1	 n	 n n1

('1 ' O )n = ^n - 1.G Tn,	 (4.13)

and	
P

(XO)n n( 
z
n+1) {J($-T), P )n,	 (4.14)

0

where i = 4-1. Tho spectral transform of terms of the form v•(fvT) or

v • (fVx) is shown in Appendix (II).

It must be noted that by solving (4.0), (4.9) and (4.12) we can

obtain an equation for X. The equations are simplified and solved as a' ;
i

system of tridiagonal matrices (Appendix III) to find the spectral

coefficients of X that satisfy the linear balance approximation. The

simplification is needed to treat the term (v • avx) in (4.9).	 To do	 r

this, we split o into its global average Cal, and the deviation from

this average a',

a = Cal +a.

Then	 i

v ' (avX) = [a]v2 X + v• (a ' vx)•	 S

The first term on the right side of the above equation is of a larger	 {.
f

0
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order	 of magnitude	 and	 is added to the other unknown terms, which	 in-

clude X.	 The smaller,	 second term,	 is considered as a	 known parameter

and	 calculated	 using	 the	 values	 of	 X	 at	 the previous.	 time	 step.	 The

^ I method	 is	 found	 to	 be	 stable.	 It	 significantly	 reduces	 the number of

1

calculations at this stage.

ei 4.2	 Energetics of the model

The two layer model discussed here conserves the sum of kinetic and

available potential energy under reversible adiabatic processes (Lorenz,

, 1960).	 If one	 introduces	 the topographical	 forcing as a lower boundary

H

vertical velochty,	 it	 is	 hard to verify the energy conservation (Burger

and Riphagen,	 1979).	 It	 is only the very simple	 lower boundary condi-

tion w0 = 0 (used by Lorenz) at p = 1000 mb that guarantees an energy-

h ` conserving system.

The	 kinetic	 and	 available	 potential	 energies,	 KE and AP,	 respec-

tively, are expressed in the forms

KE _ a(VIP • V41 + VL'VS)	 (4.15)
9

-'
and	 f

2b cAp
[(01)2	 +	 (0')21=

AP	
P
	

(4.16)
g	 +	 +[Q] + [oz	(0 1)2	 (Q,)2]),

j The square brackets	 [	 ]	 indicate the global area average and the dashes

indicate the deviation from that average.

t{
In spectral space the kinetic and available potential energy within

a spherical harmonic mode are given by
r;

(KE)^ _	 ((Vm)Z + (tm ) Z ) n(n+l) (2-6	 ),	 for m > 0	 (4.17)
n	 n	 Om	 —ga

i

and
i

I Yl-1
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2b c Ap (( Om ) 2 
+ (c7m ) 2 ) (2-6 )

(AP)' =----p	 n	 n	 Om	 0 1., 	 (4.18)
g	 170	 + (,,(()

rr 
) 2 + ((7 r ) 2	(Q0)`1

rs

for n ^ 0 m> 0, where 600 = 1 and 60m = 0 for m > 0.

4.3 Initial conditions and time integrations

The model integration starts from a hypothetical, horizontally

isothermal, atmosphere at rest with a moist adiabatic lapse rate. The

model runs for 120 days assuming perpetual solar forcing (first of

January).	 This initialization procedure is used in order to reach a

statistically steady state. After that the solar declination is changed 	 i

daily to simulate the climates of January (days 121-150), February (days
f.	

151-180), and March (days 3.81-210). These runs are considered as con-

trol runs for the comparable periods within the experiments.

The time difference method used is the centered ()eap-frog) scheme.

To avoid the growth of unnecessary computational modes, a time smoother 	 f

was used on the prognostic variables (Asselin, 1972) at every time step.	 '	 }{I

The diffusion are calculated using values at the previous time step to
j	 1

ensure computational stability. The time step used is 2 hours. Appen-

dix IV shows a flow diagram of the calculation procedure.

I

1a7k,:R
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5, Summary

In this report a two-level global spectral model is'developed. In

spite of the dynamical and physical simplifications, the model could be

used to simulate the atmospheric large scale circulation. The model is

suitable for climate sensitivity experiments in middle and high lati-

tudes of both hemispheres. The efficient computer runs of the model (30

day integration, for wave number 9 truncation, requires about 50 sec of

CPU time using CRAY-1 machine) enable us to perform many experiments and

test several hypotheses before using the complicated multilevel primi-

tive equation models.

The two levels representing the model's atmosphere are 750 mb and

250 mb.	 The surface is assumed at 1000 mb. The model retains the

nonlinear interactions between dependent variables. 	 Nonlinear inter-

actions are important components of midlatitude synoptic motions.

Additionally, for climate sensitivity studies nonlinear interactions are

potentially significant since linear solutions are resonant or nearly

resonant while nonlinear solutions are not. The present model uses a

moisture budget equation at the 750 mb level with moist convective

adjustment between the two layers. The advection by the divergent wind

is retained.	 Temperature and heat fluxes in each layer can differ

through a variable static stability.

The physical forcing is parameterized with reasonable simplicity to

include the major forcing mechanisms which develop the large scale

atmospheric circulation. The solar energy is specified as a function of

latitude and time assuming a daily mean zenith angle. Longwave radi-

ation forcing of the two layers and the surface are calculated. The

mechanical effects of orography are introduced in the form of a lower

^i

r..
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boundary vertical velocity. The differential diabatic heating due to

th
}^
	 the distribution of land and sea also is included. 	 The sea curface

I	 temperatures are specified usinO the observed January mean values. On

continents and ice surfaces the thermal energy balance equation is

}i	 solved for the surface temperature. Both orography and differential

heating between land and sea are importnat for producing a correct phase
r	 ^

V and amplitude of the middle latitudes ultralong waves in linear atmo-

spher'c models.

A relatively straightforward extension, not yet attempted, is the
r,

parameterization of upper level clouds and their associated radiative

effects. Such future work is envisaged for studying the role of high

clouds for short-term climate and the earth's radiation budget.

'I
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APPENDIX I

The Solution of the Surface Thermal
3

Energy Balance Equation

Using equations (3.8), (3.11), (3.20), (3.21) and (3.24), the steady-

state surface thermal energy balance is represented by

i"
	

B s = S s - r. 9BT94 + :: gyBTa° - Q s - LE + I (Tg - 271.2),

where

Qs _ p  c  cdlvol(T9 - Ta),

and LE = L p  cd lvO I GW( g 5 (T9 ) - h gs(Ta))•

We define I 1 and I 2 such that

	

f

	
1 1 = p  c  cdlv0l

	

f
	

and

I 2 = L p  cdlvoF
	

ti
I^

The above equation can be written in the form
	

!1 ,

F(T9 ) = S s - e9BT94 + E 9yBTa° - I 1(T9 - Ta ) - I2(gs(T9)	
1

hg s (Ta )) - I(T9 - 271.2).	 (A1.1)

a
(A1.1) is solved for T9 , using Newtons iteration method.

Differentiating (A1.1) with respect to T 9 we obtain

F'(T9 ) = -4e9BT93 - I 1 - I 2gs(T9 ) - I.	 (A1.2)

To calculate the saturation mixing ratio, g s (T9 ), and its derivative,

q'(T9 ), we use a formula for the saturation vapor pressure, e s (Bolton,

1979). This formula provides an accuracy of 0.1% in the range -30°C <

T < 35°C.
9

a s (Tg ) = 6.112 exp (17.67 (T 9 - 273.15)/(T9 - 29.65))	 (A1.3)



,622 a (T )
gs(T9)

y -p	 es(Tn)
(A1.4)

s	 g

Differentiating (A1.4) with respect to Tg,

q pe'(T )

g bCT9 )
s e

_ (
p -	 s )

(A1.5)

and using (A1.3),	 one obtains

es(T )
= 17.67 x 243.15

(A1.6) g (T9 - 29.65)2

Substituting (A1.5) into (A1.2), we arrive at

q,P x 4302.645r i ff 4s_ - 4eg8Tg3 -	
I1 - I 2 (p-es(T9 ))(Tg-29.65) 2 - I. (A1.7)

Using (A1.1) and (A1.7), the solution is convergent in the form

v+1 v	 F(T v )
Tg	-

_	 pTg (A1.8)
F (Tgv).

i

x
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where the superscripts v and v+1 indicate successive iteration steps.

Iteration is performed until F(T9) is less than a small, predetermined

value.

r4

4
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APPENDIX II

Spectral Transform of (V•fVX)

The term (V • fVX) can be expanded in the form

I
V•fVX = Vf • VX + fV2X•

Since f = 20N,

V • fVX = a2 (1-N2) 8N + 20NV2 X.	 (A2.1)

If we expand X in terms of spherical harmonics defined by (4. 1), then

eYm

V • fVX = a2mn	 Xn (1-N2 ) aNn - eZ mn n(n+l) Xn pYn,	 (A2.2)

or

V • (fVX) = a2 mn Xn t-(n2-1)Dn Yn-1 -n(n+2) On+1 Y +1 ),	 (A2.3)

jwhere we have used the two recurrence relations

may
(1 - p2) ap n = (n#-l) 0 m Yn-1 - n Dn+1 Yn+l,	 (A2.4)

and

m	 m	 m	 m m	
(A2.5)

N Yn — Dn+1 Yn+1 + Dn Yn-1'

i	 with

Dm= (n2 m2

4
n	 4n2-1)

Applying the transform operator (4.4) on (A2.3) and using (4.5),

we obtain

(V • fVX) m = Z'0 
(n(n+2) Dm Xm + (n2 -1) Dm Xm

 

P.	 (A2.6)
n	 a	 n+1 n+1	 n n-1

I

i
i

i

I
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APPENDIX III

Calculation of the Velocity Potential

To establish the linear balance approximation, equations (4.8),

(4.9) and (4.12) need to be solved in order to calculate the array X

that satisfy the linear balance relation. This appendix describes the

calculation procedure to find X.

Using the recurrence formula described in Appendix II, equation

(4.8) can be written in the form

m	 a2	 m	 n+2 m	 m	 n-1 m m
(t) n = - n(n+1) (Rt)n + 2C! ( n+1 Dn+1 Xn+1 + n Dn Xn-1 ),	 (A3.1)

where (Rt )m is the spherical harmonics of the linear and nonlinear terms

that does not contain X.

Similarily, equation (4.9) can be written in the form

(B)m = (Re ) m + (o•(Gvx))m,	 (A3.2)

,

where (R
e )

m is the same as the definition of (R T )n but for the thermodynamic

equation.

The generalized thermal wind equation (4.12) can be differentiated

with respect to time to give the form

i
m__ 20n+2 m • m	 nn_1 m • m

(e)n	 bcp ( n+1 Dn+1 to+1 + n 
DM 

tn-1)	
(A3.3)

substituting the appropriate indices of (A3.1) and (A3.2) into (A3.3),

I
we can get the diagnostic equation for X in the form,

A(n,m)X^+2 + B(n,m)X^ + C(n,m)Xn-2 + ECn,m)(Rt)n+1

i

+ G(n,m)(R.c)n-1 - (V • (aVX))m + ( R0 )m,	 (A1.4)

v-

i
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`	 whprn

t	
i A(n,m) n 402 nn±3 pm	 pm
y bcp n+1	 n+1	 n+2'

{

I, B(n m) 4s2 z	 ( n n+2	
(Dm	 ) z 

+ (n-1)(n+l) (D M)2),
bcp 	(n+1)

z	
n+1	 n	 n

,I C(n,m) _ 4n2 n=2 pm pm
bcp	 n	 n	 n-1'n

I:

p
E(n,m)

_ 20 n+2	 m
^nbe	 n+1	 +1'

P

'	 r
a

GOO
20	 n,_1	 m

gn'4
- -b-c-

n
P

The	 system (A3.4)	 needs	 the	 transformation	 of	 (V-aVX)	 in	 order to be

solved.	 In such	 case	 the	 gaussian	 elimination method	 can	 be used to
n

solve for X. However, by making the approximation described in the text

I
the system ends to a tridiagonal matrix which is more efficient to solve

1	

Ithan using the gaussian elimination method.

I
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APPENDIX IV

Program Description

Calculations for this model are contained in three programs. Two

of them produce input to the model; orography harmonics, ocean tem-

peratures, legendre polynomial coefficients, gaussian latitudes, gaus-

sian coefficients. The results of those two programs are stored on the

files;

orography harmonics
	

legendre polynomials, etc.	
t

Wave number 9
	

ADELHI
	

ADELM
	 1

Wave number 15
	

ADELH2
	

ADELIi3

The third program calculates the time evolution of the general cir-

culation. The results of the first 120 days of integration with fixed

solar radiation for wave number 9 with topography, are stored on file

ADRES2. The same but without topography is on file ADRES3. Subroutines
i

for this program are compiled and stored on file ADELH9 for wave number

9 and on ADEL15 for wave number 15.	 ^t

I

±^f
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3 OF POUR	
I V

I'
` TableTable Al.	 Schematic representation of thn sequence of operations

U Subprograms
needing input datal	 gausslan coefficients,	 stn of gaussian latitudes,
legendre polynomials and their derivative, ocean temperatures, spectral .r RDTAPE
coefficients of topography and results from previous runs (spectral

s coefficients)

^- Initial conditions	 for statistical	 calculations

!:	 x Dat1, solar forcing - solar radiation absorbed by the earth, SOLA
solar radiation absorbed by atmosphere

—I
'r

Mountalr e l feet - vertical velocity of the lower boundary (surface GROG
vrloctV. _puten41e1 1) (in spectral space) ADTO

I	 Ilumidity flux (phys.	 spac e 	transformation to spectral	 apace I	 r TR1

Trans/ormation to Fourtor specs _ RMi,R142

Transrmatlon to grid paints (using FFT)Po -r FFT991

Diabetic heating terms at gaussian latitudes	 __I r SURFT,EFAP,SNLT,FLON

? .,.I r.	 Non inset terms at sausDan intit_

t .a
	

Transformation to the Fourtor, than to spherical harmonic space 	 ^^
.r

FFT991,DUASS
x • ,	 I

' ^Addtng linear	 ontributions for tendencies (RIIS of pragnosttc

i'

c
houtequations but wit	 terms containing velocity potential)

G
4 Solve for velocity potential to7sfY linear balance SITER,A0T0

Centered time integration with smoothing	 T ,. _I	 -r TIME
i

Transformation of the vapor mixing ratio and temperature -r T12
to grid potnt domain

FCanvectiva adjus tment	 ..  I	 ^ CONVEC

r. Transformation of the mixing ratio and temperatures to the

.^
I TRI

spec tral space

Calculation of x	 from linear balance equation, with c(1,M)
1	 r DAL

Uleted to subrout1110	 e^hoytltlery	 t,luq•LFJF,_es	 _q_a^,dl	 - I

r:	 e
Statistical calculation_ monthly, zonal averaging+	 Averaging -r 2qy

Nriting results _I
li

I
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Table A2: The most important variables in the program.

Physical Space:

F1-- (luI) 
N

F15=0

F2 = L (V20) F17 = (1-P2) L (qv)

F3 _^
aA F18 -

_a
8A (qu)

F4 = -(1 N2) L V20 F19 = o

F 5 = -(1-p2) 
LT

F20 = V2X

F	 =5 L (V2T) F21 = q i

F7
8A F22 =

-(1-u2)
aN

F8 = -(1-u2) L (V2 T)
F29 = an

Fq -(I- NZ) 

ap F24 =

V2 X0

F 10
80

- aA F25 =
-(1-p 2 )

aX
aP°

F11 = -(1-p2) 
OP F26 = aA°

F12
_ as
— at\ I

F 13 = -(1-N2) D
I

F 14 aA

where:	 = stream function
T = shear
0 = potential temperature
a = static stability
X = velocity potential
q = mixing ratio
n = p /AP = normalized surface pressure
X	 = YUrface velocity potential
°=Nsine (e = latitude)

A = longitude

_...^. -^': ••.^r ,'. ---a---- ... _.®..R^,^ w,r^-cam k;,, :̀tir ^
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Table N3: The most important variables in the program.
1

Spectral Space:
r'

;t	 X = .p = stream function

TO = i = shear

PT = 0 = mean potential temperature

SI = a = static stability

Q = q = wake vapor mixing ratio

RK = X = velocity potential at 750 mb
w

Z = T720

ZTO = V2T

ZRK = V2 

ti
r

f

I^

i
1

'I

f
i
I
l
I
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Table A4: Catalog of subroutines.

Subroutines for transformations

In the following subroutines:
MM indicates number of points in spectral space in the longitudinal direction
NN indicates number of points in spectral space in the latitudinal direction
NG indicates number of points in physical space in the longitudinal direction
NK indicates number of points in physical space in the latitudinal direction

SUBROUTINE TR1 (XI,X,MM,NN,N6,NK)

TR1 transfers variables from physical to spectral space
Input: XI(NG,NK) = values in physical space
Output: X(MM,NN) = spectral coefficients

SUBROUTINE TR2(X,XI,MM,NN,N6,NK)

TR2 transfers variables from spectral to physical space
Input: X(MM,NN) = spectral coefficients
Output: XI(NG,NK) = values in physical space

SUBROUTINE GUASS (FMK,FMN,HK,,MM,NN)

GUASS transforms variables of the latitude circles from the Fourier io
the spherical harmonic domain

Input: FMK(MM,NK) = Fourier coefficients
Output.: FMN(MM,NN) = spherical harmonics coefficients

SUBROUTINE RM1(X,K,MM,NN,XM)

RM1 for given latitude finds ;o ourier coefficient X(MM) for variable in
physical space

Input: X(MM,NN) = variable in spherical harmonic domain
K = index of latitude

Output: XM(MM) = Fourier coefficients

SUBROUTINE RM2(X,K,NN,X,MM)

RM2 finds Fourier coefficients of the meridional derivative for variable
X on given latitude

Input: X(MM,NN) variable in spherical harmonic domain
Output: XMM(MM) = Fourier coefficient of meridional derivative of X

SUBROUTINE FFT991(A,WORK,TRIGS,IFAX,INC,JUMP,N,M,ISIPN)

FFT991 performs a number of simultaneous real/half-complex Fourier transforms,
or corresponding inverse transforms. See catalog of NCAR subroutines
(CRAYLIB library).

^s
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Subroutines for physical processes

SUBROUTINE SOLA (NK,ND)

SOLA calculates solar radiation absorbed by the earth and atmosphere.
Input: NK = number of gaussian latitudes

NO = day of year
Output: QSE = solar radiation absorbed by the earth jin COMMODI/SRENGI

QSR = solar radiation absorbed by atmosphere

SUBROUTINE OROG(X,TO,ETA,XO,MM,NG,NK,ALPH)

OROG calculates velocity potential at the surface.
Input: X(MM,NN) = stream function harmonics

TO(MM,NN) = shear harmonics
ETA(MM,NN) = surface pressure divided by pressure increment

harmonics
ALPH = parameters regulating height of topography

Output: XO(MM,NN) = surface velocity potential harmonics
F24(NG,NK) = laplacian of surface velocity potential
F25(NG,NK) = meridional derivative of surface velocity potential
F26(NG,NK) = zonal derivative of surface velocity potential

SUBROUTINE ADTO (RK,COR,MM,NN)

ADTO calculates coriolis term with velocity potential
Input: RK(MM,NN) = velocity potential
Output: COR(MM,NN) = 0(fVX)

FUNCTION EVAP(QS,QLI,VI,DRAG)

EVAP calculates evaporation from surface to the lower layer
Input: QS = saturation mixing ratio for surface temperature

QL1 = saturation mixing ratio in the lower layer of atmosphere
V1 = wind speed in the lower layer of atmosphere
DRAG = drag coefficient

SUBROUTINE SURFT(PT1,Q1,V1,K,PTS,QS,CD,CW,EMS,SFE)

SURFT calculates surface temperature and saturation mixing ratio for this
temperature

Input: PT1 = air temperature at 1000 mb
Q1 = relative humidity in the lower- layer x saturated mixing

ratio for PT1
V1 = wind speed in the lower layer
K = latitude index
PTS = surface temperature from previous time step
CD = drag coefficient
CW = wetness parameter
EMS = surface emissivity of the earth
SFE = parameter used in calculations of longwave emissivity

depending on cloud fraction and mixing ratio near the
surface

QSE = solar radiation absorbed by the earth
QSR = solar radiation absorbed by atmosphere

Output: PTS = surface temperature
QS = mixing ratio for temperature PTS
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FUNCTION SNLT (PTS,PTLS,VI,DRAG)

SNLT calculates sensible heat flux from the ground to
of atmosphere

Input: PTS = surface temperature
PTLS = temperature of the air at 1000 mb
V1 = wind speed in the lower layer
DRAG = drag coefficient

FUNCTION FLON (PTS,K)

the lower layer

FLON calculates clear sky outgoing radiation at the top of the atmosphere
Input: PTS = surface air temperature

RH = vertical mean relative humidity (in COMMON/RHLM/
K = index of latitude

SUBROUTINE TIME (X,T0,P1',SI,Q,MM,DT,NTIME)

TIME makes time step with smoothing
Input: RHS of eq. 4.7-4.11 (in COMMON/RHS/)

values of variables from N-1 time step (in COMMON/TIMES/)
DT = time step
NTIME = number of time step
MM = max wave number +1

Output: Values of variables on N+1 time step
X = stream function
TO = shear
PT = potential temperature
SI = static stability
Q = water vapor mixing ratio

SUBROUTINE BAL(PT,TO,MM,NN,t)

BAL calculates shear t from linear balance equation .
Input: PT(MM,NN) = potential temperature

TO(1,NN) = shear calculated in subroutine TIME
Output: TO(MM,NN) = shear satisfying linear balance

SUBROUTINE SITER(RK,Z.RK,RTO,RPT,GSI,SI,MM,NG,NK)

SITER solves equation fi
Input: RK(MM,NN)

ZRK(MM,NN)
RTO(MM,NN)

RPT(MM,NN)

SI(MM,NN)
Output: RK(MM,NN)

ZRK(MM,NN)
GS1(MM,NN)
F13(NG,NK)
F14(NG,NK)
F20(NG,NK)

)r velocity potential X in spherical harmonic domain
= velocity potential from previous time step
= leplacian of velocity potential
= R.H.S. of equation for t but without terms

containing velocity potential
= R.H.S. of equation for 0 but without terms

containing X
static stability
new value of velocity potential

= new value of V2X	 }
= velocity potential term in equation for e
= meridional derivative of X 	

n

= zonal derivative of X

= V2X

i

Y
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SUBROUTINE ZAV(RTT,NG,NK,AV)

ZAV Calculates zonal average of variable RTT
Input:	 RTT(NG,KK) = variable In physical space
Output: AV(NK) = zonal average of RTT

SUBROUTINE CONVEC(QG,PTG,SIG,PRCP,NG,NK,TIM)

CONVEC makes convective adjustment and calculates precipitation rate
Input: QG(NG,NK) = mixing ratio before convective adjustment

PTG(NG,NK) = potential temperature at 500 mb before convective
adjustment

SIG(NG,NK) = static stability before convective adjustment
TIM = time step

Output: PTG(NG,NK) = potential temperature at 500 mb after convective
adjustment

SIG(NG,NK) = static stability after convective adjustment
PRCP(NG,NK) = precipitation rate
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