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Abstract

A two-level, global, spectral model ﬁsing pressure as a vertical
coordinate is developed. The system of equations describing the model
is nonlinear and quasi-geovstrophic (linear balance) (Lorenz, 1960). A
moisture budget is calculated in the lower layer only with moist convec-
tive adjustment between the two layers. The mechanical forcing of
topography is introduced as a lower boundary vertical velocity. Solar
forcing is specified assuming a daily mean zenith angle. On land and
sea ice surfaces a steady state thermal energy equation is solved to
calculate the surface temperature, Over the oceans the sea surface

temperatures are prescribed from the climatological average of January.

The model is integrated to simulate the January climate,.
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1. Introduction

Numerical mut'ls are an important tool for testing many hypothosas
concerning climate variabjlity. During recent years a wide variety of
models have been developed. Complexity of such models ranges between
the simple energy balance models (e.f. Budyko, 1969; Sellers, 1973) and
the multi-level primitive equation models {(e.g. Manabe et al., 1965;
kasahara and Washington, 1971; Corby et al., 1977; Otto-Bleisner et al.,
1982),

Intermediate complexity models (Kikuchi, 1969; Salmon and
Hendershott, 1976; Held and Suarez, 1978), with reasonahble dynamical and
physical simplifications, can simulate some aspects of the largest
scales of atmospheric motion. The computational economy of such models
provides the opportunity for Jlonger periods of simulation and for more
extensive testing of physicu! and dynamical processes, Moreover, such
models can provide a first insight on atmospheric problems before using

the complicated general circulation models. Also, intermediate com-

plexity models are useful for interpreting the results of more compli-

cated models (Chervin, et al., 1980). |
In this study a two~level spectral model using pressure as a ver- %

tical coordinate is developed. The system of equations describing the

model is quasi-geostrophic in linear balance (Lorenz, 1960). The choice j

of global rather than hemispheric model 1s due to the fact that the

latter 1is believed to excite anomalous Rossby waves (Roads and

Somerville, 1982) which could be critical when dealing with climate

sensitivity studies.

The physical forcing is parameterized with reaconable simplicity to f

include the major forcing mechanisms which develop the large scale
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atmospheric circulation. The solar energy {s specified as a function of
latitude and time assuming a datly mean zanith angle (Wetherald and
Manabe, 1972). The amount of solar ehergy absorbed by the model’e
atmosphere and the earth's surface is calculated using a formula givan
by Kubota (1972). Longwave radiation forcing of the two layers and the
surface are calculated using climatological relative humidity and sur-
faco temperature, The mechanica) forcivg of topography is introduced in
the form of a lower boundary vertical velocity., The differential diaba-
tic heating due to the distribution of land and sea also 1s included,
The sea surface temperatures are specified using the observed January
mean values, 0On contipents and ice surfaces the therimal energy balance

equation is solved for the surface temperature,
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Fig. 1. Schematic representation of the vertical structure of the model.
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2. Governing Equations

The dry flat version of the model structure is basically the same
as that given by Lorenz (1960) which is a two level, linear balance
model using pressure as a vertical coordinate. The system of equations
describing the model retains the nonlinear interactions between depen-
dent variables., The equations representing the model are the vorticity
equation, the thermodynamic equation, the thermal wind equation, the
continuity equation and the water vapor equation. The latter is cal-
culated at the Jower layer only. Static stability is a variable in the
model's atmosphere and the horizontal wind has both the divergent and

nondivergent components.

2.1 Vertical structure of the model (pressure coordinate)

The model's atmosphere is represented by two levels; 750 mb (2=1)
and 250 mb (2=3) (Fig. 1), The vertically averaged values are cal- i
culated in the intermediate level 500 mb (2=2). The lower boundary is |
at the 1000 mb (2=0).

For a certain level £ the set of equations describing the models

atmosphere is given by;

.\.’.2 = kx v"bg‘ + VX‘Q1 (2.1)

the vorticity equation

aw
9_ g2y = - 2 . . 2
BE Ty = Il T - MU £t e () 4 (R L (2.2)

the thermodynamic energy equation

36 20 Pt Q
L. . Uy 98 - —2* + (0 22
5T = 0,0 Ty VB, 5= ¢ (7)ot (W)

+(W.)) , (2.3)
Pg P 2 Ve



the thermal wind equation

€ (Pp)" V20, = -v- g;; (rvy,), (2.4)

the continuity equation

awz

£ 2y =
3p + V3, = 0, (2.5)

and the water vapor equation
29 = - 9e(y,q) + E - P+ (S,).. (2.6)

where ¥, = (uz,vz) is the horizontal wind vector, w, the vertical pres-
sure velocity, f is the coriolis parameter, ¢2 is the stream function,
Xy is the velocity potential, G2 is the potential temperature, g is the
water vapor mixing ratio, Py is the pressure, Py is the Tower boundary
pressure level (= 1000 mb), Pc is the precipitation rate, E 1is the
surface evaporation rate, Qﬂ/cp is the diabatic heating rate, c_ is the
specific heat at constant pressure, x = R/cp. R is the gas constant, Fh’
wh, Sh are the horizontal diffusion of momentum, heat and moisture
respectively, (Fv)z and (wv)z are the vertical diffusion of momentum and

heat, respectively.

Equations (2.1)-(2.6) are six equations in the 14 unknowns wz. Xg»
0, w,, Gy Yo, Qpy (Fdow (F)py (W))g, (W), (S);, E and P, The
evaporation rate, E, is a result of the moisture vertical diffusion from
the surface while, the precipitation Pc is calculated as the excess of
super saturated moisture in the lower layer. In order to close the set

{(2.1)-(2.6) the diabatic heating and the diffusion terms need to be

parameterized in terms of the dependent variables.
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2.2 Horizontal diffusion

From the numerical stability view point the diffusive terms are not
required whei using the spectral method. There 1s a requirement to
inhibit spurious growth of amplitude at scales close to the point of
truncation due to spectral blocking (Puri and Bourke, 1974). At a level
£ the horizontal diffusion of momentum, heat and moisture is param-

eterized, respectively.

"
(F), = k 2 (v, + 2 =), | (2.7)
(W), = K V26, (2.8)
(s,), = k, v2q, (2.9)

where kh is the lateral eddy diffusfon coefficient. The value of kn is

)

taken to be 1.0x10" m’-'-sec-1 (Phiilips, 1956}, The 1last term to the

right side of (2.7) is due to the effect of spherical earth.

2.3 Vertical diffusion

The planetary boundary layer is a transition layer in the atmo-
sphere wh'ch separates between the earth surface and the large scale
atmospheric motions. In this layer, which is approximately 1 km, the
fluxes are mainly a consequence of small-scale turbulence and convec-
tion. Ip a large scale model it is necessary to utilize the effects of
the boundary Tlayer to simulate 2 correct phase and amplitude of the
ultra-long waves. Parameterized bulk formulas are used here to calcu-

late the friction dissipation, sensible hzat fiux and evaporation rate,
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2.3.1 Parameterization of frictional dissipation

The two assumptions used for parameterizing the frictional dissipa-

tion are as follows (Lorenz, 1961):

aj Surface frictional drag is proportional to the flow in the
surface layer,

b) Friction between the two layers is proportional to the dif-
ference bhetween the flow of the two layers.

The friction dissipation, (Fv)n' is given by

(2.10)

where g is the acceleration of gravity and s is the rotational stress

at level £.

Using the above two assumptions we can have

_op
re =3 Ks Vg (2.11)
and
= 4p -
r, = o8 2k, VEyy - w), (2.12)

where Ap(=p0/2) is the pressure difference between the upper and lower
Tevels, and wo is the surface stream function calcualted by Tlinear
extrapolation with respect to height (Salmon and Hendershott, 1976). kg
and de are the coefficients of friction at the underlying surface and
the surface separating the two layers respectively. ks is given the

value 4>':10-Gsea::"1 (Kikuchi, 1969), and kd is given the value 5><10-7

set:m1 {Charney, 1959).
Using (2.10), (2.11) and (2.12), and assuming that T4 at the top of

the atmosphere is egual to zero, we can find the expressijons for the

friction dissipation at the two levels,



(Fv)l = = Kk VR, + 2k T2,y = W), (2.13)

(F,) == 2k V2(hy = W), (2.14)
3

2.3.2 Parameterfzation of sensible heat
Over all surfaces, whether bare land, ice or water, the vertical

(turbulent) flux of sensible heat Qs is determined using the parameteri-

zation

Qg = Py € Cq Vo] (Tg = To)s | (2.15)
where P is the surface air density, Tg is the ground or surface tem-
perature {prescribed over the oceans), Ta the surface air temperature,
4 is the drag coefficient and |v°|15 the absolute value of the surface
wind.

The surface air temperature, Ta' is eaextrapolated from the tem-

perature values at 250 mb and 750 mb with respect to logarithm of the

pressure level,
(T, = T)/(T, = T) = an(py/p)/2n(py/py) = . 207 (2.16)

The drag coefficient, Cy is assumed constant taken to be .004 and .00l

over land and water surfaces respectively. By assuming these constant
values for the drag coefficient we neglected its possible variations
with the surface wind speed and the terrain height. The absolute value
of the surface wind, |v0|. is taken from the rotational part of the 750
mb wind. A minimum value is specified by 3 m Sec-l to avoid unrealistic

high surface temperatures (Holloway and Manabe, 1971).

e S e ST SO

n

el Zins e e eto it e o e i



AR SN R NS Y o B
Ot NN g Ty

E-

2.3.3 Parameterization of surface evaporation rate

The surface evaporation rate, E, is parameterized in the model as

E=p, cy |v, |ow (haa (T ) = b a (T, (2.17)
where qs(Tg) is the saturation mixing ratio using the surface tempera-
ture, qS(Ta) the saturation mixing ratic at 1000 mb. The saturatior
vapor pressure 1s calculated using a formula given by Bolton (1980).
The ground wetness parameter GW is a nondimensional measure of the
surface water available for evaporation and varies between 0 and 1.
Over water and ice 1t is taken as unity, whereas over land surfaces it
is taken as .25. The relatjve humidity in the atmosphere near the
surface, hs‘ is given by h, = .5 q(Tl)/qS(T1)+.5, where q(Tl) is the
mixing ratio in the lower layer. h, is simply set equal to 1; the

surface jis assumed to be everywhere saturated (the "swamp" Jlower boun-

dary condition).

2.4 Mechanical forcing of topography
At the top of the model's atmosphere (p=0) the vertical pressure
velocity W, is taken to be zero. At the lower boundary (1000 mb) Wy

introduce the mechanical effect of topography, the kinematic condition
Wy = J(¢1, Pg). (2.18)

1s used. Here Pg is the pressure at the terrain height. When computing
Pg, the continental elevations smoothed over 5° Tatitude by 5° Tongitude
are used (Berkofsky and Berton, 1955) assuming a standard atmosphera.
In this relation the advection by the divergent part of the horizontal
wind is ignored.

Integration of the continuity equation (2.5) over thé depth of the
model's atmosphere and through its two layers gives the following pres-

sure velocities

;4
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wy ApVE(x, *+ X4), (2.19)
= ~ 8B 2

Wy 5 V2(2x, * X9 (2.20)

and
w, = - 8B gz2¢y ) (2.21)
3 2 37 ‘

It 1s convenient to introduce the new variable Xg such that
= - 2
W, Ap V Xg (2.22)
From (2.19) and {2.22) we get
Xg = Xy * Xy (2.23)

The lew order truncation used in the model (truncate at either zonal
wave number 9 or wave number 15) Is considered as a further filter to
satisfy the quasi-geostrophic approximation, where the vertical velocity
should be three orders of magnitude less than the horizontal wind

(Haltiner, 1971).

2.5 The model

It is convenient to use as dependent variables the mean potential
temperature 8 and the static stability o, the stream functions ¢ and «x

for the mean wind and wind shear, so that 63 = g+g, 8. = B8-a, wa = Y+,

1
wl = -, Xy =X Using (2.7) - (2.9), (2.13) and (2.14), the governing

equations (2.1) ~ (2.6) become

k 2
B (VRY) = -0, VRHR)-I(T, V0K (Vx5 vk (Thr2ls),  (2.24)

mmm e e
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1

k
gz(vzt) = -J(w,VZt)-J(t.Vzw*f)+v-(fo)-HV'(foO)+E§V2wO'2k V21

d

2
* k(T ¢ 23 VRN,

(2.25)
20 . -
5t " -J(m.ﬂ)-d(r.u)+V-(qu)-&(on'Vn+Vx0-VU+3uV‘x0)+RhVJU+Q, (2.26)
9g "
5t = -J(m,a)-J(t,e)+vx-ve-&(vx0-va+vx0- o-ov2x0)+khv20+q. {2.27)
29
= =m\J. - - 2

at Ve (kxP(tp=T)+Vx)q)+E Pc+th q, (2.28)

b cpv26 = V. (fVr), (2.29)
and

2 = = -

apVEX, J(g-1, Pg). (2.30)

g = Pp=1.6 T (2.31)
where

K K
= nredy - (1 -
b = %[(4) (4) ] 124,

K

po K PO
— o+ (—=

Py

Q

is the vertically averaged diabatic heating per unit mass, and

- Pg K Pg ¥
Q= KGO - GO Qe

is the difference in the diabatic heating per unit mass between the two

layers.

The above system is a set of eight equations with eight unknowns ¢,

T, 9, ¢, %, Xg» wo, q. This system will be transformed to the spectral

space using the spherical harmonics as basis functions.

g =

L. .
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3. Thermal Forcing of the Earth-Atmosphere System

Mechanisms that force the model's atmosphere are either external or
internal. The upper layer is heated by short- and longwave radiation,
by the lateral diffusion of heat, and by the heat released by a con-
vective adjustment, The lower layer is heated by short- and longwave
radiation, i1ateral diffusion, sensible heat flux from the surface and by
latent heat release, and is cooled by the heat transferred upward by the
convective adjustment. Evaporation provides a source of water vapor

which is also diffused and lost through precipitation.

3.1 Sclar radiation

The incoming sclar radiation at the top of the modei's atmosphere
is calculated as a function of daily mean zenith angle (Wetheraild and
Manabe, 1972), Diurnal variation of the solar energy is excluded. The

mean zenith angle z is given by
cos z = sinp siné + (cosd cosd sin Ho)/Ho' (3.1)

where ¢ is the latitude angle, 6 is the deciination angle, and Ho is the

hour angle given by

H = cos L (-tang tans), (3.2)
6§ = 23,45 sin 2n Lﬂ%g%l , (3.3)

N is the number of days measured from day 0 at 00Z at the first of
January,

The incoming solar radiation at the top of the atmosphere is given

by
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§,° S Ho/n, {3.4)
a
T = =M z - n
$= (as) Sc cosz, b~ &< >
- n
0 b - 6> 2

Sc is the solar constant taken to be 1400 w/m?. Recent measurements of
solar irradiance from earth orbiting satellites (Smith, et al., 1982)
give an average value about 1375 w/m2. This value is about 1.8% less
than the assumed value, Parameters a and a, are the instantaneous and

mean distance of the earth from the sun, respectively,

a
£ =1+ .01676 sin 2n 82240 (3.5)
am 360

The amount of solar radiation absorbed by the earth's atmosphere system
is calculated using a formulae given by Kubota (1972). The solar radi-

ation absorbed by the atmosphere Sr is given by

Sr = x(l-ra)sm, (3.6)

where x 1s the absorptivity of the atmosphere taken to be constant =
.26, The albedo of the atmosphere, Ty is calculated taking inte con-

sideration the observed mean zonal amount of clouds {Berliand, 1960),

r. = (a + pc)c, (3.7)

where B is a constant equal to .38, c¢ is the amount of %tow and medium
ciouds 1in tenths of sky cover. Although the model has no explicit

modulation of the clouds, they are impli¢itly included through the

atmospheric albedo which affects the solar energy budget. The parameter'

o is a function of Jatitude,

e A b A e it
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The net solar energy absorbed by the earth's surface {p given by

Ss g (1-x) (1-rﬂ) (l-rﬁ)sm. (3.8)
where re is the January zonal average aibedo of the carth's surface
(oceans are not included), The surface albedos are categorized as arecas
of permanent ice (albado = ,8), partial snow in middle and low latitudes
(albedo = .2 to .3), and dense forests (albedo = .15). The values of
different parameters usad for the January solar radfative calculation
are shown in Table 1.

The above formulae give a global averaga planetary albede & 34%,
Stephens et al., (1981), using satellite observations, estimated the
global average planetary albedo for January to be 31%, Fig. 2 reveals
the calculated solar radiation absorbed by the atmosphere and the earths

surface at the first of January.

3.2 Longwave radiation

The calcutation of the longwave radiative cooling of the atmosphere
makes use of a parameterization of the outgoing infrared radiation
(Thompson and Warren, 1982). The parameterization comprises clear sky.
Only two parameters are used to predict clear-sky outgoing infrared
irradiance: surface air temperature (Ta) and ¢limatological vertical
mean relative humidity (RH).

The clear sky outgoing infrared dirradiance at the top of the

atmosphere is given by

I_
n

a +a T +a
] a

2 3
1 T2 + a,T %, (3.9)

2

1)
1l

2 = .
n bOn + bln(RH) + bZn(RH) , n=20,1, 2, 3. (3.10)

P :.-_..:.r:,;._
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The values of the b's are given by,

bao

fl

2.34414 x 102,

= - 3 1
blO 3.47968 x 101,

bZO = 1,02790 x 10!,

— [+]
byy = 2.60065 x 10°,
= - o
by, = -1.62064 x 10°,
b.. = 6.34856 x 10 %
21 = & '
b.. = 4.40272 x 10°°
0z = % ,
. -2
by, = -2.26092 x 107%,
_ -2
by, = 1.12265 x 1072,
- o -5
bog = -2.05237 x 107",
b.. = =9.670 x 10 2
13 : ,
_ -5
b,y = 5.62925 x 1077,

The values of RH used for the January simulation are shown {in Table 1.
These values are jnterpolated f--m the vaiues given by Thompson and
Warren (1982).

The model's longwave emissivity is divided between the upper and
lower layer by fraction .4 and .6 respectively. The net longwave ir-

radiance at the earth's surface {(Deardorff, 1978) is given by
- 1 - 4
L0 eg(BTg yBTa ) {3.11)

where B 1is the Stephen Boltzman constant, ag is the emissivity of the
ground surface in the infrared taken to be equal to .95, and y is the
parameterization for the effective emissivity of the air whity {is cal-

culated from the relation

o’

0L "y
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Table 1

Parameters Used for S5olar and Longwave Radiation Caleculations

Parameter Clouds Atmospheric Surface Average rela-
Latitude c Albedo (ra) Albedo (rs) tive humidity
(RH)
B84.1 0.35 0. 096 0.8 .48
76.5 0.41 0.129 0.8 .53
68.9 0.48 0.179 0.8 .58
61.3 0.54 0. 305 0.4 .6
53.6 0.56 0,343 0.3 .59
45,9 0.54 0. 31e 0.2 .58
38.13 0.45 0.248 0.2 . 54
30.6 0. 37 0,185 0.18 .46
23. 0.28 0,131 0.15 .41
15.3 6. 29 0.145 0.14 .38
7.7 0.32 0.167 0.14 A3
0. 0. 38 0.207 0.14 .57
-7.7 .36 0.193 0.12 .53
-15.3 0.35 0.183 0.1 .46
~23.0 0.34 0.166 0.1 .38
-30.6 0.36 0.179 0.1 .35
-38.3 0.42 0.227 0.1 .4
-45.9 0.51 0.293 0.1 .46
-53.6 0.60 0.377 0.5 .50
-61.3 0.62 0.369 0.5 .53
-68.9 0.55 0.8 0.8 .51
-76.5 0.47 0.8 0.8 .46
-84.1 0.40 0.8 0.8 .41
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y = (¢ + (1-c)x. 67x(1670 qa)'oa). (3.12)

here the value of ¢, the cloud fraction, is assumed as a global average

equal to .5 and 9, {5 the water vapor mixing ratio near the surface,

3.3 lLarge scale precipitation and latent heat reluase

The model has a mojisture content in the lower layer (level 1) only.
The procedure for large scale precipitation and convective adjustment
starts after completing each time step of integration. The mixing ratio
at each grid point of the 750 mb level is examined for super=-saturation.

If q(Tl) < yqs(Tl). then no precipitation or convective adjustment
takes place. The parameter y represents a specified critical relative
humidity (y = .85 in this study). T1 js the temperature at any grid
point in level 1, and q and q, are the mixing ratio and the saturation
mixing ratio, respectively,

On the other hand, 1if q(Tl) > yqs(Tl), condensation occurs with the

associated latent heat release. The temperature T1 will be agumented by

TR TR s
T

an increment AT, such that

PR

AT = £ (q(T)) - q) (T + a1, (3.13) ;;
P ki
where q; is the new saturation mixing ratio at the temperature T+AT, iy
aqs |
q¢ = ¥dg *+ Y 37 AT (3.14)

Using the Clausius-Clapeyron equation, (3.14) takes the form

= ya, + ¥ gz AT (3.15) g

where RV is the water vapor gas constant and L is the latent heat of

condensation. The rate of condensation (precipitation) per unit mass,

Pc' is given by
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Pc = (q - q's}/bt,, . (3.16)

where At 1s the time sten of integration. Using (3.13), (3.15) and

(3.16)
q=yq 2
P = —2 (1 + EI%'Tf ag) (3.17)
p v

It is clear that a relevant form of (3.13) is

c At (3.18)

After the release of latent heat in the lower layer as a result of
the condensation of water vapor, the atmosphere is tested to see if
convective adjustment is required. Convection is assumed to develop if
the atmosphere is unstable rejative to the moist adiabatic lapse rate
rs. then the temperature of the two levels is adjusted to stabilize the
model's atmosphere by cooling the Tower layer and warming the upper

layer, with the vertically averaged temperature conserved. The new

lapse rate is the same as Fs.

3.4 Net heating of the Earth-Atmosphere system

The way in which the moedel responds to heating and how it simulates
the observed atmospheric heat balance are fundamental aspects of its
ability to reproduce the seasonal distributions of global climate. From
the previous discussions we can calculate the different partitions of
the heating function.

Gf basic importance is the net radiation at the top of the atmo-
sphere which represents the net gain or loss of both solar and longwave

radiative energy this may be written as

Nm = Sm - raSon - rs(l - x) (1 - ra) SOD - L4. (3.19)

e o

TR [ Yt st e b4 7 T
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On the right side of (3.19) the second and third terms represent the
amount of solar radfation reflected by the atmosphere and the earth's
surface, respectively, while the last term is the net outgoing longwave
radiation at the top of the model atmosphere.

The net radiation at the earth's surface NE mnay be written using

(3.8) and (3.11) as

N5 = (1-x) (l-ra) (l—rs)Sm - LO' (3.20)
The net surface heating, Bs, is given by
Bs = N5 - Qs - LE, (3.21)

It is5 assumed that Bs=0. and the resulting equation is used to determine
the surface ground temperature Tg. Over the water surfaces, on the
other hand, the surface temperature is assigned and Bs is not required
to be zero.

The net atmospheric heating may be considered by combining the net
radiation at the top of the atmosphere (3.19), the net surface heat flux
(3.21), and the internal release of latent heat accompanying condensa-
tion (here precipitation). Recognizing that the surface evaporation

removes heat from the water source and therefore it is not a part of the

RS, REeAT o

atmospheric heating, we may write the net heating of the atmosphere, Ba'

as

B, = x(1-r ) S+ Ly~ L, *+Q_ +LP_. (3.22)

This expression for Ba is also equal te the sum of the atmospheric

storage of total energy and the divergence of the atmospheric total
4

energy flux. é
Finally, we may combine the net surface heating (3.21) and the net

atmospheric heating (3.22) in order to get the net heating of the
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combined earth-atmesphere system. This heating is given by

Bea =N, + L(PC-E) (3.23)

This may be regarded as the balance of total epergy 1in the earth-

atmosphere system.

3.5 Surface temperature

The surface temperature, Tg. is used to calculate the bulk formulae
(2.15) and (2.17)., As mentioned before the surface temperatures of the
water are specified as the climatological values of January. On land
and ice surfaces the temperature 15 calculated from the surface thermal
epergy balance (3.21) assuming negligible heat capacity of the earth
(Bs=0) (Holloway and Manabe, 1971), Over oceanic locations assumed to
be covered with fce, Bs=0 is also assumed, but with a term representing
the heat conducticn through the ice (depending on the difference between
the ice surface temperature and the freezing point of water) added to
the right hand side of (3.21). Over all ice and snow covered surfaces
the computed surface temperature is not permitted to rise above 0°C. In
such a case the excess heat is assumed to be used in melting. Equation

(3.21) can take the form

BS = Ns -Qs - LE + I(Tg - 271.2). (3.24)

The last term on the right bhand side represent the effect of heat con-
duction from unfrozen water below sea ice in the polar latitudes of the
Northern Hemisphere. Assuming the thermal conductivity of ice, Tc = 2.1
J rn-1 °K‘1 sec-l, the temperature of the underlying water is 271,2°K and
the ice layer thickness d = 2 m, then the constant I=Tc/d=1.05 w/m?
°K-1. This term is needed to prevent unrealistically cold temperatures

in the Northern Hemisphere polar regions during winter,
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Appendix I explains the method of solving (3.24). The HNewton

fteration method is used and is found to be efficient in solving such

type of equations.
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4. Numerical Simulation
The conventional spectral method {s Galerkin's method based on ex-
panding the different variables w.,th a truncated series of surfdce
spherical harmonics. The method is used for the numerical integration
of the hydrodynamical equations, Two types of expansion are often used,
the trianguiar and rhomboidal truncations. The advantages of the spec-
tral method over the usual finite diffurence methods are summarized as
follows (Machenhauer, 1974):
1) The nonlinear terms are alias free, which prohibits the exis-
tence of the nponlinear instability described by Phil11ips (1959),
2) Quadratic area integral invariants 1ike the kinetic energy and
enthalpy also are invariant for the truncated system, since the
error fields are orthogonal to the variables.
3) Linear terms are computed without any truncation error,
4) No special treatment is required for dealing with the polar
region when using the vorticity and divergence fields. By con-
trast, 1in the finite difference method the horizontal wind con-
ponents are discontinuous at the pole.
5) The friction term of the finite difference methods is necessary
to prevent aliasing instability. It also is necessary for the
removal of energy from the shortwave end of the spectrum. When
using the spectral method, it also is important to prevent blocking
of energy at the highest wave numbers retained, but in this case
the purpose is only a simulation of the effect of the small scales

not retained in the representation.
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A study by Hoskins and Simmons (1974) compared finite difference
and spectral models, The study showed that no one method has a super-
fority in all respects. In comparison with the finite difference model,
the spectral model gave much improved solutions for the amplitudes and
phases of the predicted waves., On the other hand, the finite difference
mode]l gave a more accurate representation of the frontal systems.

It is of interest to compare the two types of truncation mentioned
before, namely the rhomboidal and triangular. For the same zonal wave
number truncation, the triangular representaticn has Ffewer degrees of
freedom than the rhomboidal and hence requires less computing time. If
we retain the same degrees of freedom in both the triangular and rhom-
boidal truncations, the former will be more appropriate for mean zonal
fields than the latter. At the same time the rhomboidal truncation
could introduce higher wave numbers, namely the eddies. The same study
by Hoskins and Simmons (1974) did not give a definite conclusion con-
cerning the comparison between rhomboidal and triangular truncation. 1In
some experiments the rhomboidal truncation gave a more accurate approxi-
mation to the solution than the triangular truncation. In other experi-
ments the triangular truncaiion gave a more efficient description of

Rossby wave instabiTity.

In this study we used the rhomboidal truncation since it gives a
comparable resolution in both horizontal directions.
4.1 Spectral method
The dependent variables o, 1, X, Xg? 6, o, q are expanded in trun-
cated series of the form
M |m|+J

X(u,A) = £ X SR TS (4.1)
m=-M n=|m |

L ER Ty
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where X 1s any variable being studied, K: are harmonic coefficlienis, A
is longitude, yu i5 the sine of latitude, m is the zonal wavenumber, n is
the degree of a spherical harmonic cohponent, n-Iml is a meridional
wavenumber in the sense that there are n-lml zero crossings of Y:
between equator and pole, M is the highest zonal wave number retained in
the truncated series, and J is the highest value of n-lml retained in
the truncated series, Yg are spherical harmonic functions defined by

V. PE () eimA.

0 (4.2)
Pﬁ are the Associated Legentre functions of the first kind
b hl/z n+ |m!
m (2n+1) (n- m)! (1-12) d n
P (u) = ( (n2-1) (4.3)
n an (nt mt" n dpn+|m|
A spherical harmonic coefficient is defined by
2n +1 X
"= Xy dpan (4.4)
n an n
0 -1
m* . m
where Yn is the complex conjugate of Yn'
Y: are orthogonal over the surface of the sphere, {.e.
1 Zn +1 m m?% 1 for (ml,nl) = (m,n)
= [ Y_ Y U dudA = , (4.5)
an o L, nong 0 for (m,,n,) # (m,n)
and are eigenfunctions of the Laplacian operator
vey" = - (0L (4.6)
n a2 n’ '

where a is the radius of the sphere. The coefficients for negative and

positive values of m are related in the following way:

=M _ g m m*
Xn = (-1) Xn .

Samcee G . -
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Nonlinear terms are transformed from grid point space to spectral space
using the full transform method (Machenhauer and Rasmussen, 1972;
Orszag, 1970). The method is computationally highly efficient relative
to the interaction coefficient method for J > 9,

The procedure for calculating the spectral coeffigients of the
nonlinear terms using the full transform method is as follows:

1) Calculate the nonlinear terms at each grid point in physical

space,

2) Transform to the Fourier space at each Gaussian lat{tude, using

fast Fourier transform routines,

3) Trapsform to the spectral space using the Gaussian quadrature

formula.

Highly nonlinear terms, l1ike diabatic heating terms cause problems
in finding their spectral transforms. This problem is resolved by using
the full transform method. They are calculated in physical space, then
added to the noniinear dynamic terms, and the whole sum is transformed
to spectral space.

To guarantee an alias-free solution, there are two conditions that
must be fulfilled (Machenhauer and Rasmussen, 1972). These conditions
specify the minimum number of zonal grid points, Ng' and the minimum
number of Gaussian latitudes, Is’ on the sphere:

Ng >3 M+ 1

Is >M+ 3/2 4,

In case of the rhomboidal truncation (M = J) used here, the latter
condition is

Is > 5/2 M,

Mo/
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For the simulation with wavenumber 9, Ng £ 32 and Is = 23. On the other
hand, for wave number 15 simulation, Ng = 48 and Is = 40,

Tc transform the system (2.24 - 2.31) to its spectral form, ecach
variable is expanded using (4.1). The resulting equations arz mul-
tiplied by Y:* and integration of both sides is performed using equa-
tions (4.4 - 4,6). The nonlinear terms are calculated using the trans-

form method mentioned before.

The system of equations in its spectral form is given by

" o= - a? - 20m m _
= n(n+1) {=I(y,v2y) J(t,v2t)] + ey o
m n-1l .m
Q (n+1 Dr1Xpdper * - 0 (xo)n 1 (4.7)
k 2k
-2 m _ (n+l) .m h m
2 (Wo)n Ky Mgz Wyt 37 ¥,

em . .-a% .. 2 _ 2 m 20m M -
tn n(n+1) {( J("I:.V lIJ) ‘J(mtv T))}n n(n+1)
n+2 n= m m
Q (525 D11 (gdney * o Dntxgdp-q)
(4.8)
k 2k
_5 m _ m _ ntl) m . " h m
* 2 (wo)n 2""d Tn kh A Tn Y3z Ty

nt2 .m m (p-1) .m m
2 (n+1 Dn+1 Xn+l * n Dn xn-l)'

én = {=J(4,8) - I(1,0) - (VX VB * VX, -To + 3ov2x0)}ﬂ

(4.9)
- AR ko 4 (9 (ovi))] ¢ G
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g = {~ (o) = I(T,0) - (VX eV0 + Vx +Va - oviyx )T

{4.10)
 Comot - B i

6 = - (@ (o) = v - 0 LB gy eep )T, (4.11)

m _ n+2 m m n=1) m _m
by On = 280G Dner T * T n o O Tnea (4.12)
m _ m _ m
(), = - 1.6 T, (4.13)
and p
m _Za? _ KM

where 1 = J:i. Tha spectral transform of terms of the form V-{f¥t) or
V-(fvx) 1s shown in Appendix (II).

It must be noted that by solving (4.8), (4.9) and (4.12) we can
obtain an equatfon for x. The equations are simplified and solved as a
system of tridiagonal matrices (Appendix Il11) to find the spectral
coefficients of x that satisfy the linear balance approximation. The
simplification 1s needed to treat the term (V:.oVvyx) in (4.9). To do
this, we split o finto its glohal average [o], and the deviation from

this average o',
g = [a]l + a'.
Then
V-(oVx) = [c]vZx + V-(o'Vx).

The first term on the right side of the above equation {is of a larger

S e e am
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order of magnitude and is added to the other unknown terms, which in-
c¢lude x. The smaller, second term, is considered as a known parameter
and calculated using the values of x at the previous time step., The
method 15 found to be stable., It significantly reduces the number of

calculations at this stage.

4,2 Energetics of the mode)

The two layer model discussed here conserves the sum of kinetic and
available potentfal energy under reversibte adiabatic processes (Lorenz,
1960). If one introduces the topographical forcing as a lower boundary
vertical velocity, it 1s hard to verify the energy conservation (Burger
and Riphagen, 1979). It is only the very simple lower boundary condi-
tion Wy = 0 (used by Lorenz) at p = 1000 mb that guarantees an energy-
conserving system,

The kinetic and available potential energlies, KE and AP, respec-

tively, are expressed in the forms

KE %E(vw-vm + Vrevr) (4.15)

and

2b
cp Ap
g

[(9')2 + (0')2]
[o] + [02 + (8')2 + (0')?]

AP (4.16)

L
The square brackets [ ] indicate the global area average and the dashes
indicate the deviation from that average,

In spectral space the kinetic and available potential energy within

a spherical harmonic mode are given by )

KeX] = S22 Ci)? + (¥)?) n(nv1) (2+64), form 2 0 (4.17)

and

PR S———
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2b o, 8 ((O1)? +(o7)2) (2-6p,)
9 ) ‘ii‘“g’” ¢ (oT)2 - (00)2

APy = i (4.18)

for n # 0 m> 0, where 6,59 = 1 and 6, = 0 for m > 0,

4.3 Initial conditions and time integrations

The model integration starts from a hypothetical, horizontally
isothermal, atmosphere at rest with a moist adiabatic lapse rate. The
model runs for 120 days assuming perpetual solar forcing (first of
January). This initialization procedure is used in order to reach a
statistically steady state. After that the solar declination is changed
daily to simulate the climates of January (days 121-150), February (days
151-180), and March (days 181-210). These runs are considered as con-
trol runs for the comparable periods within the experiments.

The time difference method used is the centered (Jeap-frog) scheme,
To avoid the growth of unnecessary computational modes, a time smoother
was used on the prognostic variables (Asselin, 1972) at every time step.
The diffusion are calculated using values at the previous time step to
ensure computational stability. The time step used is 2 hours. Appen-

dix IV shows a flow diagram of the calculation procedure.

g
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5, Summary

In this report a two-leve)l global spectral model is 'developed., In
spite of the dynamical and physical simplifications, the mode! could be
used to simutate the atmospheric large scale circulation. The model is
suitable for climate sensitivity experiments in middie and high lati-
tudes of both hemispheres., The efficient computer runs of the model (30
day integration, for wave number 9 truncation, requires about 50 sec of
CPU time using CRAY-1 machine) enable us to perform many experiments and
test several hypotheses before using the complicated muitilevel primi-
tive equation models.

The two levels representing the model's atmosphere are 750 mb and
250 mb. The surface 15 assumed at 1000 mb. The model retains the
nontinear interactions between dependent variables. Nonlinear inter-
actions are important components of midlatitude synoptic motions,
Additionally, for climate sensitivity studies noniinear interactions are
potentially significant since Tinear solutions are resonant or nearly
resonant whiie nonlinear solutions are not. The present mode) uses a
moisture budget equation at the 750 mb Tlevel with moist convective
adjustment between the two layers. The advection by the divergent wind
is retained. Temperature and bheat fluxes in each layer can dJiffer
through a variable static stabiility.

The physical forcing is parameterized with reasonable simplicity to
include the major forcing mechanisms which davelon the large scale
atmospheric circulation. The scolar energy is specified as a function of
latitude and time assuming a daily mean zenith angle. Longwave radi-
ation forcing of the two layers and the surface are calculated., The

mechanical effects of orography are introduced in the form of a lower
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boundary vertical velocity. The differential diabatic heating due to

the distribution of land and sea also is included. The sea surface

temperatures are specified using ihe observed January mean values, On

continents and ice surfaces the thermal energy balance equation fis

solved for the surface temperature. Both orography and differential
heating between land and sea are importnat for producing a correct phase

and amplitude of the middle tlatitudes ultralong waves in linear atmo-

spher‘c medels.

A relatively straightforward extension, not yet attempted, is the

parameterization of upper level clouds and their associated radiative

effects. Such future work is envisaged for studying the role of high

clouds for short-term climate and the earth's radiation budget,
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APPENDIX 1
The Solution of the Surface Thermal

Energy Balance Equation

Using equations (3.8), (3.11), (3.20), (3.21) and (3.24), the steady-
state surface thermal energy balance jis reprasented by

= - q . 4 - - -
Bs S5 ngBTg + t.gyBTa Qs LE + 1 (Tq 271.2),

where

Qs Pg cp cd,VOI(Tg - Ta)‘

and LE = L p_ cd|v0,GW(qs(Tg) = hq (T, ).

We define I1 and 12 such that

I1 = P cp cd|v0|
and
I=Leg cdlvol
The above equation can be written in the form
- - 4 4 . - -
| F(Tg) = Ss agBTg + sgyBTa Il(Tg Ta) Ia(qs(Tg)
- hqs(Ta)) - I(Tg - 271.2). (AT.1)

(Al.1) is solved for Tg, using Newtons iteration method,

Differentiating (Al.1) with respect to Tg we obtain

FI(T ) = -4sgBTg3 "Iy - Lay(T) - I (A1.2)
Te calculate the saturation mixing ratio, qs(Tg). and its derivative,
q'(Tg), we use a formula for the saturation vapor pressure, e {Boliton,
1879). This formula provides an accuracy of 0.1% in the range -30°C <
Tg < 35°C.

es(Tg) = 6.112 exp (17.67 (Tq - 273.15)/(Tg ~ 29.65)) (Al.3)
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.622 es(T )
- —— 8 a’ Al.4
qs(Tg) b - es(T ) ( )
g9
Differentiating (Al.4) with respect to Tg’
q.pe’ (T )

. _ 5 's' g

qs(Tg) P - es) (Al.5)
and using (Al.3), one obtains

. - 17.67 x 243.15

eS(Tg) (Tg T 29.65)7 . (Al.6)

Substituting (Al.5) into (AL1.2), we arrive at
qu x 4302,645

- I — 3 . - -

F (Tg) 4sgBTg I1 I2 (p~e5(Tg))(Tg~29.65)2 I. (Al.7)
Using (ALl.1l) and (Al.7), the solution is convergent in the form

v+l v TV

T =T - -——ﬂ—\-,- (A1.8)

where the superscripts v and v+l indicate successive iteration steps.
Iteration is performed until F(Tg) is less than a small, predetermined

value.
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APPENDIX II

Spectral Transform of (V+fVy)

The term {V-fUyx) can be expanded in the form
Vefvx = VfUx + fv2y,

Since f = 20,
Voo = %2 (1-p2) gﬁ + 20uvex. (A2.1)

If we expand x 1n terms of spherical harmonics defined by (4.1), then

m
ay
= 29 m .y 2y —D _ 20 m M
vefox = 7z ZZ x, (1-u®) o aZ 2% n(n*l) x WY, (A2.2)
or
. o 20 oy Mo o oMM m m
V-(fvx) = 55 ZX x {=(nZ-1)D0 Y, -n(n+2) D, Yn+1], (A2.3)
where we have used the two recurrence relations
aYﬁ m . m m i
- 2y = = -
(1 - p*) on (n*1) O Y g =D s Yo (A2.4)
and
m _ .M m m .m
Y = Dner Yoer * 0 Ypero (A2.5)
with
p™ = (DnE-m? &
n = Gnz-1)

Applying the transform operator (4.4) on (A2.3) and using (4.5),
we obtain

m m

2o m.m
a+1 Xne1 T (n%-1) D X, 1) (A2.8)

m_ =20
(V-fvx)n =22 (n(p+2) D

i s i e, e it i eI
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APPENDIX II1

Calculation of the Velocity Potential

To establtish the 1Jinear balance approximation, equations (4.8),
(4.9) and (4.12) need to be solved in order to calculate the array ¥
that satisfy the linear balance relation. This appendix describes the
calculation procedure to find x.

Using the recurrence formula described in Appendix Il, equation
{4.8) can bhe written 1in the form

(v)

m_o_ n+2 m n=1 m
n " n(n+l) (ROp + 20 (ufo 0 x 0+ =00 x Ty, (A3

where (Rt): is the spherical harmonics of the linear and naonlinear terms
that does not contain ¥.

Similarily, equation (4,9) can be written in the form

3

. — m . m
(9)n = (Re)n + (v (on))n. (A3.2)

where (RG): is the same as the definition of (Rt): but for the thermodynamic

equation.

The generalized thermal wind equation (4.1i2) can be differentiated

with respect to time to give the form

m_ 20 . n+2 m =+ m n-1 Dm s m
n n

n bcp (—= D T + tn-l)' (A3.3)

(0) n+l n+l “n+l

substituting the appropriate indices of (A3.1) and (A3.2) into (A3.3),

we can get the diagnostic equation for ¥ in the form,

A(n,m)x:+2 + B(n,m)x: + Cln,mxy_, * E(n,m)(Rt)2+1

+ G(n,m(R N = (V+(avx))] + (RyD7, (A3.4)
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_ An2 p+3 om m
A(n,m) = be n+1 Prv1 Onaze

2 -
B(n,m) = %‘-}; e RGN S N GO

an2 n-2 n
Ctnum) = 5= 555 O oLy
p
=20 nt2 \om
E(nm) = b el Ppen
20 n-1
6(num) = g 5 0y

The system (A3.4) needs the transformation of (V-09x) in order to be
solved. In such case the gaussian elimination method can be used to
solve for yx. However, by making the approximation described in the text
the system ends to a tridiagonal matrix which is more efficient to solve

than using the gaussian elimination method.
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APPENDIX IV

Program Description

Calculations for this model are contained in three programs, Two
of them produce input to the model: orography harmonics, ocean tem-
peratures, legendre polynomial coefficients, gaussian latitudes, gaus-

sian coefficients, The results of those two programs are stored on the

files:

orography harmonics legendre polynomials, etc.
Wave number 9 ADELH1 ADELH4
Wave number 15 ADELHZ ADELH3

The third program calculates the time evolution of the general cir-
culation. The results of the first 120 days of integration with fixed
solar radiation for wave number 9 with topography, are stored on file
ADRES2. The same but without topography is on file ADRES3. Subroutines
for this program are compiled and stored on file ADELH9 for wave number

9 and on ADEL15 for wave number 15.
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Table Al. Schematic representation of thn seguence of oparations

NMeading {nput data: gaussian coofficifents, sin of gaussian latitudes,
legendre polynomials and their derivative, ocean temporatures, spectral e
coafficients of topography and rasults from previous runs (spoctra)
coefficionts)

¥
[ Initial conditions for statirtical calcutations

Tine logp

P | minmre, s s i e ...
Dafly solar forcing - solar radiation absorbed by the earth, b
solar radiatfon absorbed by atmosphere -
R
Mauntair effect -~ vartical velocity of the lower boundary (surface >
velnc[&y_putmntinl) {in spectral space) |
[ Humidity flux (phylfdxbiaaj :-Ifaniformatlon to spactrul lpnco R
¥ [
[CTransformation to Fourfer space R I
| Transformation to grid points (using FFT) 1+
kd .-
I Diabatic heating terms at gaussian latitudas l-+
! T |
|_Nomiinaar terms at gaussian ]ggiguggg |
l Transformation to the Fourfer, then to spherical harmonic qpncéx-h I'*
C e e - A —— e
Adding 1inear contributions for tendencies (RHS of prognostic
equations but witheut tarms containing velocity potential)
Y
r—gblvo for velocity potential to satisfy linear halance ]+
¥ —— R
[ centered time integratiap with smoothing — .|'*
Transformation of the vapor mixing ratio and temperature id
to grid point domain e e
R ¥
{ Convective adjustment e . . — | >
Trnmfnrmat!on o_fka\o mi.;rr;;]'“rat.ié_;:;ﬁ— t:é}11peraturns to the »
|_spactral space . e -
Ca1culution of 1 rrom 1{near balanco ;aﬁhiion, with (1, M) ST Y,
L.galgulated {n subrouting .T_UE__n.s,.,%b.oundpry condftion
L‘l Statistica) calculatfon - month_y,+zonnl ;;uraging o j~>

] Writing results

Subprograms
RDTAPE

50LA

OR0G
ADTO

TR

RMY , RM2

FFT99N
SURFT,EFAP,SKLT,FLON

FFT991,GUASS

SITER,ADTO
TIME
TR2

CONVEC
TRI
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A2: The most important variables in the program.

cal Space:
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J0
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stream function

shear

potential temperature

static stability

velocity potential

mixing ratio

p /AP = normalized surface pressure
= Yurface velocity potential

sing (£ = latitude)

tongitude

15

17

18

19

20

21

22

23

24

25

26

(1-p2) gﬁ (qv)
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sx (qu)

T2y
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Table A3: The most important variables in the program.

Spectral Space:

X =14 = stream function

T0O = 1t = shear

PT = 6 = mean potential temperature
SI = o = static stability

Q = g = wake vapor mixing ratio

RK = ¥ = velocity potential at 750 mb
2 = 7y

IT0 = v2¢

IRK = 2y

R

il

P VR




46

Tabie A4: Catalog of subroutines.

Subroutines for transformations

In the following subroutines:

MM indicates number of points in spectral space in the
NN indicates number of points in spectral space in the
NG indicates number of points in physical space in the
NK indicates number of points in physical space in the

SUBROUTINE TR1 (XI,X,MM NN,N6,NK)
TR1 transfers variables from physical to spectral space
Input: XI(NG,NK) = values in physical space
Output: X(MM,NN) = spectral coefficients
SUBROUTINE TR2(X,XI,MM,NN,N6,NK)
TR2 transfers variables from spectral to physical space
Input: X(MM,NN) = spectral coefficients
Output: XI(NG,NK) = values in physical space

SUBROUTINE GUASS (FMK,FMN,fit ,MM,NN}

TR

tongitudinal direction
Jatitudinal direction
longitudinal direction
latitudinal direction

GUASS transforms variabies of the latjtude circles from the Fourijer 1o

the spherical harmonic domain
Input: FMK(MM,NK) = Fourier coefficients

Qutput: FMN(MM,NN) = spherical harmonics coefficients

SUBROUTINE RML(X,K,MM,NN,XM)

RM1 for given latitude finds rourier coefficient X(MM) for variable in

physical space :

Input: X(MM,NN) = variable in spherical harmonic domain

= index of latitude
Output: XM(MM) = Fourier coefficients

SUBROUTINE RMZ2(X,K,NN,X ,MM)

A e <

RM2 finds Fourier coefficients of the meridional derivative for variable

X on given latitude

Input: X(MM,NN) variable in spherical harmonic domain

Output: XMM(MM) = Fourier coefficient of meridional

derivative of X ;

SUBROUTINE FFT991(A,WORK,TRIGS,IFAX,INC,JUMP ,N,M, ISIPN})

FFT991 performs a number of simultaneous real/half-compl

ex Fourier transforms,

or corresponding inverse transforms. See catalog of NCAR subroutines

(CRAYLIB library).
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Subroutines for physical processes

SUBROUTINE SOLA (NK,ND)

SOLA calculates solar radiation absorbed by the earth and atmosphere.
Input: NK = number of gaussian latitudes
ND = day of year
Output: QSE = solar radiation absorbed by the earth ,.
QSR = solar radiation absorbed by :;n‘.mo*:,phsar‘e}m COMMOM/ SRENG/

[{ ]

SUBROUTINE OROG(X,TO,ETA,X0,MM,NG,NK ALPH)

OROG calculates velocity potential at the surface.

Input: X(MM,NN) = stream function harmonics
TO(MM ,NN) = shear harmonics
ETA(MM,NN) = surface pressure divided by pressure increment

harmonics

ALPH = parameters regulating height of topography

Qutput: XO(MM,NN) = surface velocily potential harmonics
F24 (NG, NK iaplacian of surface velocity potential

) =
F25(NG,NK) = meridional derivative of surface velocity potential
) =

F26(NG,NK zonal derivative of surface velocity potential

SUBROUTINE ADTO (RK,COR,MM,NN)

ADTO calculates coriolis term with velocity potential
Input: RK(MM,NN) = velocity potential
Qutput: COR(MM,NN) = v(fVyx)

FUNCTION EVAP(QS,QL1,V1,DRAG)

EVAP calculates evaporation from surface to the lower layer
Input: QS = saturation mixing ratio for surface temperature
QL1 = saturation mixing ratio in the lower layer of atmosphere
V1 = wind speed in the lower layer of atmosphere
DRAG = drag coefficient

SUBROQUTINE SURFT(PT1,Ql1,V1,K,PTS,QS,CD,CW,EMS,SFE)

SURFT calculates surface temperature and saturation mixing ratio for this
temperature

Input: PT1 = air temperature at 1000 mb

QL = relative humidity in the lower layer x saturated mixing
ratio for PT1

VI = wind speed in the Tower layer

K = latitude index

PTS = surface temperature from previous time step

D = drag coefficient

CW = wetness parameter

EMS = surface emissivity of the earth

SFE = parameter used in calculations of Tongwave emissivity
depending on cloud fraction and mixing ratio near the
surface

QSE = solar radiation absorbed by the earth

QSR = solar radiation absorbed by atmosphere

Qutput: PTS = surface temperature
QS = mixing ratio for temperature PTS

RS U L L i
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SNLYT calculates sensible heat flux from the ground to the lower layer
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FUNCTION SNLT (PTS,PTLS,V1,DRAG)

of atmosphere

Input:

FLON calculates clear sky oulgoing radiation at the top of the atmosphere

Input:

PTS = surface temperature

PTLS = temperature of the air at 1000 mb
V1l = wind speed in the lower layer

DRAG = drag coefficient

FURCTION FLON (PTS,K)
PTS = surface air temperature
RH = vertical mean relative humidity (in COMMON/RHLM/

= index of latitude

SUBROUTINE TIME (X,TO,PT,S),Q,MM,DT,NTIME)

TIME makes time step with smoothing

Input:

Output:

RHS of eq. 4.7-4.11 (in COMMON/RHS/)

values of variables from N-1 time step (in COMMON/TIMES/)

DT = time step

NTIME = number of time step
MM = max wave number +1

Values of variables on N+1 time step
X = stream function

TO = shear

PT = potential temperature

S1 = static stability

Q = water vapor mixing ratio

SUBROQUTINE BAL(PT,TO,MM,NN,t)

BAL calculates shear 1 from Tinear balance equation

Input:
Output:

SITER solves equation for velocity potential x in spherical harmonic domain

Input:

Qutput:

PT(MM,NN) = potential temperature
TO{1,NN) = shear calculated in subroutine TIME
TO(MM,NN) = shear satisfying linear balance

SUBROUTINE SITER(RK,ZRK,RTO,RPT,GS1,SI,MM,NG,NK)

RK(MM,NN) = velocity potential from previous time step

ZRK(MM,NN) = leplacian of velocity potential

RTO(MM,NN) = R.H.S. of equation for 1 but without terms
containing velocity potential

RPT(MM,NN) = R.H.S. of equation for 8 but without terms
containing ¥

SI(MM,NN) = static stability

RK(MM,NN) = new value of velocity potential

ZRK(MM,NN) = new value of V2y

GS1(MM NN) = velocity potential term in equation for 6
FL3(NG,NK) = meridional devivative of ¥

F14(NG,NK) = zonal derijvative of ¥
F20{NG,NK) = Vv2x
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SUBROUTINE ZAV(RTT,NG,NK,AV)

ZAV calculates zona) average of variable RTT
Lnput: RTT(NG,KK) = variable in physical space
Output: AV(NK) = zonal average of RTT

SUBROUTINE CONVEC(QG,PTG,SIG,PRCP,NG,NK,TIM)

CONVEC makes convective adjustment and calculates precipitation rate
Input: QG(NG,NK) = mixing ratio before convective adjustment
PTG(NG,NK) = potential temperature at 500 mb before convective
adjustment
SIG(NG,NK) = static stability before convective adjustment
TIM = time step
Output: PTG(NG,NK) = potential temperature at 500 mb after convective
adjustment
SIG(NG,NK) = static stability after convective adjustment
PRCP(NG,NK) = precipitation rate
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