35 research outputs found

    Engineering Leadership Development: Contribution of Professional Skills to Engineering Undergraduate Students’ Leadership Self-efficacy

    Get PDF
    Corresponding to industry trends and changes in engineering education accreditation criteria, non-technical professional skills training is now seen as central to baccalaureate engineering education. Beyond simply developing good managers in the engineering fields, engineering educators have adopted a goal to prepare engineering students to be leaders who can provide vision to their organizations with strong ethical standards. This study investigated engineering undergraduate students’ leadership efficacy development associated with such professional skills as self-awareness, global competence, ethical awareness, creativity, and teamwork skills. Responding to an online survey, 247 engineering undergraduates who were enrolled in an engineering leadership course participated in this study. Results of this study indicated that there are positive associations among the five professional skills (e.g., self-awareness, ethical awareness, global competency, creativity, and teamwork skills), and engineering leadership self-efficacy for engineering undergraduate students. The five professional skills (self-awareness, ethical awareness, global competency, creativity, and teamwork skills) predicted 54% of the overall variance of engineering leadership self-efficacy

    Examining links between dust deposition and phytoplankton response using ice cores

    Get PDF
    Dust is a major source of nutrients to remote ocean environments, influencing primary productivity (PP). Enhanced oceanic PP causes drawdown of atmospheric CO2 and is considered likely to be a driver of climate variability on glacial-interglacial timeframes. However, the scale of this relationship and its operation over shorter timescales remains uncertain, while it is unclear whether dust fertilisation, or other mechanisms, e.g. nutrient upwelling, are the primary driver of PP in high-nutrient low-chlorophyll (HNLC) ocean regions. In this study, we demonstrate, using dust derived Fe and Methanesulfonic acid (a measure of ocean PP) deposition in ice cores from the South Atlantic (South Georgia Island) and North Pacific (Yukon), that PP is significantly correlated with Dust-Fe on both an event and annual scale. However, measuring the relationship between (dust) Fe fertilization and PP in high resolution ice cores is subject to a number of highly complex factors, which are discussed and together used to recommend future research directions. In conclusion, our research suggests that changes in aeolian Fe flux, due to climate change and human activity in dust source regions, could have significant implications for HNLC ocean PP and, therefore potentially, carbon sequestration

    A case study using 2019 pre-monsoon snow and stream chemistry in the Khumbu region, Nepal

    Get PDF
    This case study provides a framework for future monitoring and evidence for human source pollution in the Khumbu region, Nepal. We analyzed the chemical composition (major ions, major/trace elements, black carbon, and stable water isotopes) of pre-monsoon stream water (4300–5250 m) and snow (5200–6665 m) samples collected from Mt. Everest, Mt. Lobuche, and the Imja Valley during the 2019 pre-monsoon season, in addition to a shallow ice core recovered from the Khumbu Glacier (5300 m). In agreement with previous work, pre-monsoon aerosol deposition is dominated by dust originating from western sources and less frequently by transport from southerly air mass sources as demonstrated by evidence of one of the strongest recorded pre-monsoon events emanating from the Bay of Bengal, Cyclone Fani. Elevated concentrations of human-sourced metals (e.g., Pb, Bi, As) are found in surface snow and stream chemistry collected in the Khumbu region. As the most comprehensive case study of environmental chemistry in the Khumbu region, this research offers sufficient evidence for increased monitoring in this watershed and surrounding areas

    Evaluating the effectiveness of a large multi-use MPA in protecting Key Biodiversity Areas for marine predators

    Get PDF
    Marine protected areas can serve to regulate harvesting and conserve biodiversity. Within large multi‐use MPAs, it is often unclear to what degree critical sites of biodiversity are afforded protection against commercial activities. Addressing this issue is a prerequisite if we are to appropriately assess sites against conservation targets. We evaluated whether the management regime of a large MPA conserved sites (Key Biodiversity Areas, KBAs) supporting the global persistence of top marine predators
    corecore