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• Document chemical composition of
snow, stream, and ice from Khumbu re-
gion, Nepal

• Provide a framework for future moni-
toring of environmental chemistry

• Characterize chemical signatures in
snow and stream chemistry

• Provide evidence for elevated levels of
human-sourced metals in snow and
streams

• Increased tourism in the Khumbu are
likely contributors to high metal
concentrations
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This case study provides a framework for future monitoring and evidence for human source pollution in the
Khumbu region, Nepal. We analyzed the chemical composition (major ions, major/trace elements, black carbon,
and stablewater isotopes) of pre-monsoon streamwater (4300–5250m) and snow (5200–6665m) samples col-
lected from Mt. Everest, Mt. Lobuche, and the Imja Valley during the 2019 pre-monsoon season, in addition to a
shallow ice core recovered from the Khumbu Glacier (5300m). In agreement with previous work, pre-monsoon
aerosol deposition is dominated by dust originating from western sources and less frequently by transport from
southerly air mass sources as demonstrated by evidence of one of the strongest recorded pre-monsoon events
emanating from the Bay of Bengal, Cyclone Fani. Elevated concentrations of human-sourced metals (e.g., Pb, Bi,
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As) are found in surface snow and stream chemistry collected in the Khumbu region. As themost comprehensive
case study of environmental chemistry in the Khumbu region, this research offers sufficient evidence for in-
creased monitoring in this watershed and surrounding areas.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Glaciers and snow cover in high mountain regions play a significant
role in regional hydrology and ecology (Immerzeel et al., 2020). In the
Himalayas, modern environmental stresses such as climate change are
causing a decline in glacier volume and an increase in the risk of glacier
outburst floods (Wang et al., 2019). The KhumbuGlacier, aswith almost
all Himalayan glaciers, is in a state of negativemass balance (Bolch et al.,
2012; King et al., 2017), leading to increased melt. Long-term projec-
tions of amplified melt, in combination with other changing climatic
factors like precipitation patterns, indicate increased pressure on
water availability and food security for rural Himalayan communities
(Wang et al., 2019). Meltwater from local glaciers such as the Khumbu
Glacier is responsible for ~65% of the local domesticwater supply during
the dry, pre-monsoon season (Wood et al., 2020). The local population
of 3500–6000 people in the Khumbu region depends on stream water
for their drinking, irrigation, and ecological purposes (Wood et al.,
2020). Additionally, around 57,000 trekkers, climbers, and local support
teams make the trek to Everest Base Camp annually (Government of
Nepal, 2020), with several thousand climbers seasonally residing at
Everest Base Camp, depending upon the local streams derived from
Khumbu Glacier melt for drinking/cooking.

Down-glacier residents face a seemingly contradictory threat from
glacier outburst floods and freshwater decline due to warming and ac-
celerated melt (Pritchard, 2019). Further melt is also associated with
wind-blown debris lowering glacier surface albedo (Hansen and
Nazarenko, 2004; Kaspari et al., 2014). In addition, and most relevant
to this study, as snow and glaciers melt, entrapped chemicals are re-
leased that are both essential to ecosystems and agriculture
(Immerzeel et al., 2020) and in some cases detrimental (King et al.,
2017;Miner et al., 2020) to ecosystems and human health. Precipitation
and melt can contain toxic substances associated with distant sources
such as fossil fuel combustion and metal production and local activities
such as agriculture and biomass burning.

Asia is themost significant global contributor of atmospheric anthro-
pogenic trace metals (Pacyna and Pacyna, 2001). While heavy metals
occur naturally, anthropogenic activity results in significantly higher
levels in the atmosphere, which can be detrimental to human health.
Long-distance heavy metals and soot sources can include land usage,
mining, metal smelting, oil, and coal combustion. Local sources for the
Khumbu region include leaded aviation fuel for helicopters, generators,
dung burning, batteries, and local incinerators (Elvin et al., 2020).
Whether natural or anthropogenically sourced, enhanced concentra-
tions of heavy metals in the environment globally are of concern to
human health (Fernández-Luqueño et al., 2013; Mishra et al., 2014;
Mohod and Dhote, 2013; Tchounwou et al., 2012).

Long-range transport and deposition of aerosols in the Himalayas
are strongly influenced by the seasonal migration of the South Asian
monsoon, with comparatively greater accumulation of aerosols during
the non-monsoon season, compared with the monsoon season
(Bonasoni et al., 2012; Carrico et al., 2003; Cong et al., 2009; Duan
et al., 2009; Kang et al., 2007). Chemical fingerprinting of air masses il-
lustrates the distinct differences between Tibetan Plateau (cold, dusty)
and Indo-Gangetic (warm,marine, with anthropogenic and biogenic in-
puts) source air masses (Mayewski et al., 1980). Differences between
seasonal summer monsoon and winter precipitation chemistry in

Himalayan ice cores thus reflect changes in air mass source. Source var-
iability for instance leads to high dust content (e.g., Ca2+, Mg2+, SO4

2−,
NO3

−) in pre-monsoon layers and a strong marine (Na+, Cl−) signal in
monsoon layers (Kang et al., 2004, 2002, 1999; Marinoni et al., 2001;
Mayewski et al., 1983, 1980; Wake et al., 1993). Whereas pre-
monsoon precipitation shows a strong influence from the prevailing
westerlies, originating over North Africa and the Middle East before
they pass over India to Nepal, monsoon season air transport is domi-
nated by southern air masses from the Bay of Bengal (Cong et al.,
2009; Perry et al., 2020).

The chemical composition of atmospherically-deposited aerosols in
snow can be used to track air mass pathways, along with source and
emission strength for certain chemical components (Balestrini et al.,
2016; Cong et al., 2010b, 2010a; Grigholm et al., 2015; Kang et al.,
2007; Shrestha et al., 2002). The chemical signatures can be compared
to instrumented climate records revealing proxies for past regional cli-
mate and atmospheric composition from snow pits and ice cores
(Shichang et al., 2002; Wake et al., 1993, 1990). For example, recent in-
creases in anthropogenically sourced aerosols (e.g., heavy metals, black
carbon) in the Himalayas can be associated with both long-distance
transport, as well as increased local anthropogenic activities, including
agriculture, expansion in land use, and biomass burning (Cong et al.,
2010a; Jenkins et al., 1995; Kaspari et al., 2014, 2009b; Reynolds et al.,
1995; Stone et al., 2010). Black carbon deposition, which is highest dur-
ing the pre-monsoon season and likely to be transported via valley
winds, is predominantly associated with regional (Nepal and India)
and western sources, likely from the Middle East (Gul et al., 2021;
Marinoni et al., 2010). Specific to the Khumbu region, a baseline of at-
mospheric chemical signatures are provided by atmospheric research
from the Nepal Climate Observatory at Pyramid (e.g., Bonasoni et al.,
2008; Decesari et al., 2010; Jacobi et al., 2015; Marinoni et al., 2010)
and surface snow studies on major ions and trace elements
(e.g., Balestrini et al., 2016, 2014; Marinoni et al., 2001; Valsecchi
et al., 1999).

Pioneering work on water (e.g., streams, lakes) chemistry in the
Khumbu region determined the weathering influence from complex
bedrock geology and presence of debris-ridden moraines, while evi-
dence of agricultural activities was detected at lower altitudes (Jenkins
et al., 1995; Reynolds et al., 1995; Tartari et al., 1998b). The growing
tourism population in the Khumbu (quadrupled since 1995) has be-
come increasingly detectable via human and animal waste chemical
and bacterial signatures (Ghimire et al., 2013a, 2013b, Nicholson et al.,
2016, 2019) in waterways, especially in lower elevation, pre-monsoon
surface waters. Pursuing research in remote, high mountain regions,
such as the Khumbu, is logistically challenging (e.g., Elvin et al., 2020),
causing difficulty in collecting the necessary information to complete
long-term or widespread studies. With this case study, we contribute
further investigations necessary to fill gaps in scientific knowledge,
such as details in the chemical signatures of atmospheric conditions
during the shoulder seasons like the pre-monsoon, anthropogenic influ-
ences on atmospheric deposition in the Khumbu region, and how the
chemistry in the watershed can be affected by increased glacier melt,
local and distant anthropogenic influences, and changes in precipitation
seasonality.

To construct a framework of environmental chemistry during the
late pre-monsoon period in the Khumbu region, we present the
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chemical composition (major and trace elements, major ions, black car-
bon, and stable water isotopes) of surface snow, stream, and an ice core
collected (Fig. 1) as part of the 2019National Geographic and Rolex Per-
petual Planet Everest Expedition. Themain objectives for this case study
are: 1) to expand current understanding on the spatiotemporal deposi-
tion of chemicals by investigating pre-monsoon snow and stream
chemistry, 2) to determine background chemistry from a shallow ice
core comprising ice from dated prior to 1950, 3) to develop a profile
of chemical characteristics for a pre-monsoon storm that resulted in sig-
nificant snow accumulation, and 4) to characterize the state of anthro-
pogenic pollution in snow and streams in the Khumbu region. To our
knowledge, this is the first characterization of chemistry extracted
from Khumbu Glacier ice and the first detailed characterization of pre-
monsoon snow/water elemental chemistry for the region.

2. Methods

2.1. Study area

The study area (Fig. 1) is located in the Khumbu and Imja Valley re-
gions in Sagarmatha National Park, Nepal, between 27.8676 and
28.0205°N and 86.7569 and 86.9391°E. The boundary of our study
area begins on the southern trail to Mount Everest- known locally as
Sagarmatha and Chomolungma- at the Dingboche (4410 m) and
Pheriche (4370 m) villages and continues to Everest Base Camp
(30 km away; ~5300 m) on the Khumbu Glacier, then continues up
the climbing route toward Mt. Everest summit, as far as Camp II

(6665 m). The extent of Everest Base Camp for this study, as observed
during the 2019 climbing season, is defined as between 28.0048°N;
86.8566°E and 27.9962°N; 86.8483°E.

The pre-monsoon period (March to May) in the Khumbu Valley re-
gion is defined by well-developed south-eastern up-valley breeze
with high wind speed and gusts, which weaken toward the end of
May, with the onset of the south-western monsoon (Tartari et al.,
1998a). Up-valley (anabatic) winds are dominant during the day-time
and periods of precipitation while down-valley (katabatic) winds
are more prevalent during the night and early morning (Bonasoni
et al., 2010). Annually averaged daily wind speed from Pyramid auto-
matic weather station (AWS) for 1994–1996 (Tartari et al., 1998a) is
1.39m/s, with the highest wind strength (gusts exceeding 38m/s) dur-
ing winter and lowest in the post-monsoon (October–November),
while pre-monsoon wind speed ranges from about 3 to 8 m/s (based
on 2006–2007 measurements by Bonasoni et al. (2010))).

Minimum annual temperatures occur during winter (~−15 °C daily
min.) and maximum annual temperatures occur during the summer
monsoon (~8 °C daily max.), while annually, daily mean values range
between about 5 to −10 °C based on 1994–1999 AWS data at Pyramid
(Bollasina et al., 2002). The pre-monsoon season is defined by high solar
radiation, with a mean temperate of−2.9 °C with mean diurnal ranges
of 10.2 °C, and temperatures increasing from the winter minimum to
summer maximum (Tartari et al., 1998a). Precipitation in the Khumbu
region is concentrated in the monsoon season, which is accountable
for 76% of annual precipitation, while only 17% occurs during the pre-
monsoon season (Perry et al., 2020).

Fig. 1. Sample map from the Khumbu region, Nepal. Shaded map of the regional area with location of snow (yellow), stream (red), and ice core samples (black), as well as the current
glacial extent (aqua), stream paths (turquoise), and main trekking and climbing routes (gray). Snow sample group locations identified as the following: a) Basecamp, b) Camp I,II, and
c) Mt. Lobuche. Stream sample locations identified as the following: 1) KGM1, 2) KGM2, 3) Dughla, 4) Pheriche, 5) Chukkung, and 6) Imja. Glacial extent is sourced from the 2018
GLIMS glacier database (Raup et al., 2007), and polygons for the Everest area glaciers are extracted from the 2014 GLIMS dataset. Figure created by Sam Guilford. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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During the study period (2019/04/17 to 2019/05/10), temperatures
ranged from −9 to 8 °C (average temperature of −1.1 ± 3.7 °C), wind
speed ranged from 0.1 to 6.5 m/s (average 2.3 ± 1.6 m/s), relative hu-
midity ranged from 14 to 100% (average 76 ± 23%), and 35 mm w.e.
of total precipitation fell over the 26 days, taken from hourly meteoro-
logical data from the Pyramid Weather Station (27.959°N, 86.813°E;
5035 m). During this period, there were twomajor precipitation events
(>10 mm) with high relative humidity, 16–17 April and 3–4 May (Cy-
clone Fani storm event), while other notable precipitation events
(>0.5 mm) occurred on 22, 23, and 30 April. No wind direction data is
available for the study period from the local weather stations the au-
thors had access to.

2.2. Sample collection

2.2.1. Ice core samples
This study's ice core was collected from the Khumbu Glacier

(28.0039°N, 86.8583°E, 5300 m), about 300 m east of Everest Base
Camp west of the Khumbu icefall (Fig. 1), using a modified Kovacs
Mark III drilling system with a 7.25 cm core diameter and powered by
a Milwaukee hand drill. The core was collected to provide a baseline
for pre-anthropogenic era chemistry records from the immediate sam-
pling area for comparison with the modern samples collected in this
study. We collected a total of 3.5 m of ice, which was analyzed for
major ions, trace elements, and stable water isotopes at the University
of Maine Climate Change Institute. Aerosol-based micro-radiocarbon
dating of the ice core sections was conducted using the top and bottom
0.9 m of ice (1.8 m total), following the procedure described in Uglietti
et al. (2016), with sample processing at the Paul Scherrer Institute and
radiocarbon analysis at the Laboratory for the Analysis of Radiocarbon
with AMS of the University of Bern, Switzerland.

2.2.2. Surface snow samples
A total of 94 surface snow samples were collected from Everest Base

Camp,Mt. Lobuche, and theMt. Everest climbing route up to 6665mbe-
tween April 14, 2019, to May 10, 2019 (Fig. 1; Table S1). To collect the
surface snow, DI-rinsed 250 mL HDPE containers were used, according
to the cleaning procedure detailed in Dixon et al. (2011). Extreme care
and protective gear (e.g., polyethylene gloves) were used to assure the
samples were not contaminated. All samples were collected from the
upper ~5 cm of snow, immediately sealed, and stored in a sampling
tent at Everest Base Camp. Due to the length of the field season, there
was no viable way to keep the 250 mL sample containers frozen in the
field, therefore, the samples were allowed to melt after collection.
Snow samples for black carbon analysis were collected in smaller
50 mL containers and stored frozen in vacuum thermoses and portable
freezers. All samples were flown to Kathmandu via helicopter, where
they were stored until shipping to the University of Maine (Elvin et al.,
2020).

At Everest Base Camp (~5300 m), samples were collected almost
daily (n=63) from three locations (Sites 1, 2, 3) and from an additional
site (Site 4) immediately following the Cyclone Fani event (described
further in Section 3.3). Site 1 was located close to the multiple caravans
of tents in the Everest Base Camp, on the debris-covered Khumbu Gla-
cier, ~50 m away from the closest tent. Sites 2 and 3 were ~ 100 m
away from tents and located between the penitentes on the Khumbu
Glacier. Site 4 was located within the camp, about 5 m from the closest
tent. Immediately following Cyclone Fani, we collected 24 fresh snow
samples on the morning of May 4th ~ 1000 NPT, from Sites 1, 2, and 4.
Camp I and II samples were collected along the southern climbing
route, from~100mwest of the tents at Camp I (6000m)up to theWest-
ern Cwm (western side valley), and Camp II (6665 m). From Mt.
Lobuche climbing route (n = 7), surface snow was collected every
100 m in elevation up to the summit (~5400–5900 m) on May 1st, fol-
lowing a >1.1 mm snow event (29–30 April based on observations at
a local weather station located at Pyramid).

2.2.3. Stream samples
To determine the chemical composition of surface waters in the

Khumbu region, we sampled six locations along the Khumbu Glacier
meltwater stream, Khumbu Valley streams, and Imja valley streams
(Fig. 1, Table S1). We collected three replicate samples at each location
(18 samples total), sampled directly from the surface (top 5 cm) of the
running streams using the same cleaning, storage, and shipping proce-
dures detailed in Section 2.2.2. The upper Khumbu Glacier melt stream
samples were collected from a meltwater stream located northwest of
the Khumbu icefall and south-east of Everest Base Camp (~250 m
from the closest tents). The lower KhumbuGlaciermelt stream samples
were collected from a meltwater stream within the crevasse ridges, lo-
cated about 200mdirectly south and downslope of the farthest tents on
the southwest side of Everest Base Camp, closest to the entry to the trek-
king path. The Khumbu Valley samples, fed by meltwater from the
KhumbuGlacier, andMts. Pumori, Chumbu, and Lobuchewere collected
from twomeltwater stream locations, one located ~150m northwest of
the Dughla settlement, and the other ~1200 m downstream from the
Pheriche village. The Imja Valley samples, fed predominantly by the
Imja Glacier, were collected from two stream locations, one located at
the outlet of Imja lake and the other collected ~1000 m downstream
from the Chukkung village.

2.3. Chemical analysis

Prior to analysis, the snow and stream samples were siphoned into
three volumes: 5 mL in Dionex™ AS-DV autosampler polyvials with fil-
ter caps for ion chromatography (IC), 5mL in glass bottleswith Phenolic
PolyCone Lined Caps for stable water isotope analysis, and the remain-
ing volume was acidified to 1% with Optima double-distilled HNO3

and left to digest for 60 days prior to ICP-SFMS analysis. To analyze
the Khumbu Glacier ice core, we used a continuous melting system
resulting in ~200 samples (~0.85 cm resolution), detailed in Osterberg
et al. (2006). To assure no contamination from the drill or during trans-
port influenced the chemistry, the inner portion of the ice core ismelted
and siphoned for IC and ICP-SFMS analysis, while the outer portion of
the core is melted and siphoned for stable water isotope analysis.

Snow, stream, and ice samples were analyzed for major ions, major/
trace elements, and stable water isotopes using instruments and tech-
niques located at the University of Maine's Climate Change Institute.
The sevenmajor ions (Ca2+, Na+, Mg2+, K+, NO3

-, SO4
2−, Cl−) were ana-

lyzed using a Thermo Scientific™ Dionex™ Ion Chromatograph ICS-
6000 analytical system fitted with suppressed conductivity detectors
and Dionex AS-HV autosampler. The 48 major/trace elements (Ag, As,
Al, B, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Gd, Ho, K, La, Li, Lu,
Mg, Mn, Mo, Na, Nd, Ni, P, Pb, Pr, S, Sb, Sc, Si, Sm, Sr, Tb, Th, Ti, Tm, U,
V, W, Y, Yb, Zn) were analyzed using a Thermo Electron Element 2 In-
ductively Coupled Plasma Sector Field Mass Spectrometry (ICP-MS)
coupled to a Cetac Model ASX- 260 autosampler. A summary of blank
measurements and detection limits for ICP-MS and IC data of ice core
and snow/stream samples are presented in Table S2 and Table S3, re-
spectively. Analysis of blank measurements and detection limits sig-
nifies that there is negligible sample contamination for the snow,
stream, and Khumbu Glacier ice core ICP-MS and IC measurements
used in this study during collection, transport, and chemical analyses.
We removed two samples from Everest Base Camp from this study
that skewed the data as outliers which were assumed to be contami-
nated, potentially caused by a bad seal or undetected crack in the sam-
ple container. Contamination is assumed for these two samples from
Everest Base Camp due to more than three elements having concentra-
tions >0.99 percentile, and for one Cyclone Fani sample with Cu values
7000% greater than the average. The stable water isotope measure-
ments (δ18O, δD), reported as per mil relative to Standard Mean Ocean
Water (SMOW), were analyzed as vapor on a Picarro Laser Cavity 109
Ringdown Spectrometer (Model L2130-i) with a high throughput va-
porizer. Based on various analyses of internal and international
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standards, the long-term precision is 0.1‰ (1σ) for δ18O and 0.4‰ (1σ)
for δD.

Snow samples for black carbonwere shipped frozen and analyzed at
Central Washington University. The samples were melted in a warm
water bath, sonicated, and agitated with a magnetic stir bar during
sample measurement. Samples were subsequently nebulized using a
Marin-5 nebulizer and coupled to an extended range single-particle
soot photometer (SP2) to measure refractory black carbon. Measured
concentrations were calibrated using Aquadag standards and all
samples were blank corrected.

3. Results

3.1. Ice core chemistry

Ice core samples preserve the signature of past conditions, therefore
to estimate past atmospheric composition in the region, we sampled
and analyzed the chemistry from the 3.5 m deep ice core drilled from
the Khumbu Glacier (28.0039°N, 86.8583°E, 5300 m), directly below
the Khumbu icefall (Fig. 1). Aerosol-based micro-radiocarbon dating
(Uglietti et al., 2016) of the top and bottom sections yielded ages of
1040± 161 yr cal BP at the top of the core and 196± 128 yr BP (before
1950) at the bottom, suggesting that the section of collected icewas ro-
tated in its descent down the icefall. Here we define modern as years
after 1950. Since the sample resolution for this ice core is likely an aver-
age of multi-annual values, the comparison with modern pre-monsoon
snow samples is not straightforward, nevertheless, the chemistry in this
ice provides an estimate of pre-modern concentrations that can be com-
pared with modern snow and stream sampling data.

We compare the average concentrations of selected chemistry from
the Khumbu Glacier ice core, snow, and stream samples from this study
(Fig. 2), specifically major crustal elements (Si, Fe, Al, Mg, Ca), major
marine ions (Na+, Cl−), anions (SO4

2−, NO3
−), and known

anthropogenically-influenced elements (Pb, U, As, Bi, Cs) (Casey,
2012; Cong et al., 2010a; Dong et al., 2015; Gabrielli et al., 2020; Jiao
et al., 2021; Kaspari et al., 2009b; Lee et al., 2008; Tripathee et al.,
2014a). Additional chemistry measurements and statistics are included
in the supplementary material (Fig. S1, S2; Table S2). The most abun-
dant elements (>1% total concentration)measured within the Khumbu
Glacier ice core are as follows: Si > Ca> S> Fe > Al >Mg> P>Na> K.
For ions, Ca2+ makes up 76% of the total cation concentration and SO4

2−

makes up 64% of the total anion concentration, followed byNa+>K+>
Mg2+ and NO3

− > Cl−. The Khumbu Glacier ice core has generally

depleted δ18O values, compared with snow and stream averages, rang-
ing from −13.8 to −24‰ (average − 21.2‰). This range aligns with
δ18O values measured from ice cores drilled on the northern side of
Mt. Everest (Zhang et al., 2005) and from Dasuopu, both in Tibet
(Thompson et al., 2000),most likely reflecting variability in the strength
of the Indian summer monsoon and source of precipitation.

Principal component analysis (PCA) of the Khumbu Glacier ice core
chemistry, summarized in Table S4, reveals predominantly crustal and
marine sources. To investigate source regions, a PCA was applied to
the chemistry in the snow, water, and ice samples, using the sci-kit
(v0.20.2) module in Python 3.6. PCA is used to reduce the dimensional-
ity of the measured sample chemistry, allowing identification of pat-
terns or relationships. The analysis includes all major ions and all trace
elements, except rare earth elements as well as Mo, Sb, Cd, and Ag
due to their low concentrations. Crustal elements from dust dominate
the first principal component (PC1ice; 40%) (e.g., Fe, Al, K, Mg, Ti, Ba, V,
Si). PC2ice (21%) is largely composed of SO4

2−, S, Ca2+, Ca, Sr, As, U,
Mg2+, possibly due to solutes from the rock debris confined in the ice
core (Takeuchi et al., 2020). PC3ice (8%) is dominated by marine source
ions (Na+, Cl−), in addition to Zn, Na, K+, and Cu. In PC1ice and PC2ice
(40% and 21% variance, respectively) crustal elements likely originate
from southern/central Asia and the Tibetan Plateau (Kang et al., 1999,
2004, 2007; Kaspari et al., 2007, 2009a;Wake et al., 1993) and localized
dust sources, respectively (Balestrini et al., 2014; Casey, 2012; Casey
et al., 2012; Reynolds et al., 1995). PC3ice for Khumbu Glacier ice core
(8% variance) is dominated by marine source chemistry (Cl−, Na), po-
tentially derived from southerly sources that dominate during themon-
soon season and are less frequent during the pre-monsoon season
(Perry et al., 2020; Valsecchi et al., 1999). The average Na+/Cl− ratio
(0.84) in this ice core is close to that found in seawater (0.86), indicating
a marine or possibly evaporite source (Fig. S3, S4).

3.2. Snow chemistry

To analyze the potential role and spatial distribution of anthropo-
genic pre-monsoon sources to the Khumbu region, we measured
major ions, trace elements, and stable isotopes in 94 snow samples, col-
lected from three general locations in the Khumbu Valley (Fig. 1):
Everest Base Camp (~5250 m, n = 39), Camp I and Camp II
(6026–6665 m, n = 24) and Mt. Lobuche (5280–5875 m, n = 7).
These locations were chosen because of the accessibility from trekking
routes and varying elevations. We collected an additional 24 samples
from snow accumulation at Everest Base Camp during 3–4 May 2019,

Fig. 2. Overview of Snow, Streams and Ice Chemistry. Average total concentrations of selected chemistry from snow (blue circles, n = 94), stream (orange triangles, n = 18), Khumbu
glacier ice core (green square, n = 200), East Rongbuk ice core 1950–2002 (purple diamond, n = 859, Kaspari et al. (2009b)) and East Rongbuk ice core 1650–1950 (gray ‘x’, n =
1352, Kaspari et al. (2009b)) samples in ascending order of average ice core concentrations for crustal (Si, Fe, Al, Mg, Ca), marine (Na+, Cl−), anions (NO3

−, SO4
2−)and known

anthropogenically influenced chemistry (Pb, U, As, Bi, Cs). Isotopic variations in the air mass tracer δ18O are shown on the right for snow (blue), stream (orange) and Khumbu Glacier
Ice Core (green). All error bars show 95% confidence intervals. Extended chemistry measurements are found in Supplementary Material. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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coincident with Cyclone Fani (Perry et al., 2020). Average concentra-
tions of selected chemistry in addition to black carbon and δ18O for
snow sample locations are shown in Fig. 3. Black carbon (commonly re-
ferred to as soot), a known toxin (Janssen et al., 2012), is used in this
study to supplement the chemistry data and will be expanded upon in
a future study. Additional chemistrymeasurements and statistical over-
views including rare earth elements are included in the Supplementary
Material (Fig. S2, S5; Table S3, S5).

Based on the entire collection of snow samples, the most abundant
elements (>1% total concentration) are Si > Fe > Al > K > Mg > Ca >
Ti > Na. Themost abundant cation in the snow is Ca2+ (77% of total cat-
ion concentration) followed by Mg2+ > Na+ > K+, and the most abun-
dant anion in the snow is NO3

− (53% total anion concentration) followed
by SO4

2− > Cl−. The average δ18O values in surface snow vary consider-
ably, ranging from −1.9 to −21‰ (avg. -13.3‰). The more depleted
values associated with the Camp I, II, and Cyclone Fani samples
(Fig. 3), are similar to those found in the Khumbu Glacier ice core
(Fig. 2). Samples collected at Camp I and II have δ18O values that are
more depleted (−17.1 ± 2.6‰) compared with lower elevation snow
samples, which is consistent with lower temperatures at higher eleva-
tions and lifting of air masses with consequent depletion (Wen et al.,
2012).

High elevation sampling locations along the Khumbu Glacier (Camp
I and Camp II; 6000–6700m) are dominated by crustal source elements

and ions with relatively low concentrations of marine source and
pollution-sourced chemistry, including black carbon (5 ± 13 ng/g).
Our results suggest lower pre-monsoon concentrations of anthropo-
genic and marine source chemistry at the higher elevation sampling
sites on Mt. Everest's southern aspect, and instead, the chemistry is
dominated by dust deposition. Similar crustal element associations are
noted in other high altitude locations (>6000 m) in the Himalayas
(Carrico et al., 2003). By comparison, samples collected at Everest Base
Camp have the highest concentrations for Cl−, Bi, and As while Mt.
Lobuche has the highest concentrations for the remaining chemistry,
shown in Fig. 3. Black carbon concentrations are significantly higher at
Mt. Lobuche (128±71 ng/g) comparedwith the other sample locations
(11 ± 19 ng/g).

PCA results for snow chemistry reveal three prominent principal
components (>5% variance) that makeup 83% of the chemistry's total
variance (Table S4). PC1snow and 65% of the variance is dominated by
crustal elements (e.g., Si, Fe, Al, Mg, Co, Cr, Li, V, K), similar to PC1
from the Khumbu Glacier ice core. The second principal component
(PC2snow)with 10% of the variance is associatedwithmarine and poten-
tially anthropogenic source chemistry (e.g., Cl−, Na+, B, S, SO4

2−, NO3
−,

K+), similar to PC3snow from the Khumbu Glacier ice core chemistry.
With 8% of the variance, PC3 includes P, Na, and potential anthropogen-
ically sourced chemistry (e.g., W, Bi, U, As, Pb, Cs) and is negatively re-
lated to Ca2+, SO4

2−, Mg2+, S, K+, and Ca, likely associated with local

Fig. 3. Snow Chemistry by Sample Group. Average total concentrations of selected chemistry to elucidate crustal- (Si, Fe, Al, Mg, Ca), marine (Na+, Cl−), anions (NO3
−, SO4

2−) and known
anthropogenically influenced chemistry (Pb, U, As, Bi, Cs), from snow samples at Everest Base Camp (orange triangle, n=39 samples), Everest Base Campduring Cyclone Fani (blue circle,
n= 24 samples), Camps I and II (green square, n = 24 samples), and Mt. Lobuche (purple diamond, n= 7 samples) in ascending order of average total snow concentrations. Extended
chemistrymeasurements are found in Supplementary Material. Isotopic differences in air mass tracer δ18O and variations in concentration of black carbon are also shown for each sample
group. All error bars show 95% confidence intervals. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Enrichment Factors of Snow. Enrichment factor values for snow (samples by location. Only elements with average EFc values > 10 for a sample group are shown for snow samples.
Red horizontal line refers to EFc of 10 (enriched), blue line is EFc of 100 (highly enriched). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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debris from rock weathering and mass wasting processes (Balestrini
et al., 2014; Casey, 2012; Casey et al., 2012; Reynolds et al., 1995;
Takeuchi et al., 2020).

To identify rock and soil dust in contrast to other potential sources,
such as local or aeolian contaminants, we calculate the crustal enrich-
ment factor (EFc) (Fig. 4) by taking the ratio of a selected metal to Al
normalized to the mean upper continental crust ratio of the selected
metal to Al (Ferrari et al., 2001; Wedepohl, 1986), averaging by each
sample group, and removing outliers outside three times the standard
deviation. An EFc below 10 suggests crustal sources are dominant,
while an EFc greater than 10 signals the influence of additional (likely
anthropogenic) sources, referred to in this study as “enriched”
(Barbante et al., 2003; Ferrari et al., 2001; Halstead et al., 2000). The
EFc values among the sample groups reveal enriched values for Bi, Ni,
Cs, Zn, Cd, As, Cu, S, Sb, U, and Pb. EFc values for Bi in snow are highly
enriched for all sample locations. High elevation sampling locations
(Camp I and II) have fewer enriched elements (Bi, Cs, As) than lower el-
evation sites, indicating lesser anthropogenic influences. EFc values for
Everest Base Camp show the largest number of enriched elements (Bi,
Ni, Cs, Zn, Cd, As, S, Sb, U), consistentwith the relatively large population
residing at Everest Base Camp. Enriched Bi, Cs, Cd, As, Sb, U, and Pb are
found in the Mt. Lobuche samples. Enriched values of Pb are only found
in snow samples at Mt. Lobuche. Therefore, the anthropogenic signal is
minor at higher elevation sites (Camp I and II) andmore pronounced at
Everest Base Camp and Mt. Lobuche. This is likely due to the decreased
wind speed at lower elevations and higher deposition.

Airmass tracers, δ18O (transport/atmospheric conditions), Si
(crustal), Cl− (marine), and Pb and Bi (anthropogenic) for the surface
snow sampling period 2019/04/17 to 2019/05/10 is compared with
hourly meteorological data from the Pyramid Weather Station
(27.959°N, 86.813°E; 5035 m), located within ~6 km distance from
Everest Base Camp (Fig. 5). Daily variations of Si, Bi, and Pb at Base
Camp correspond with precipitation events. Concentrations decrease
during and immediately after precipitation events, after which concen-
trations increase due to particulates accumulating after a snowevent. Pb
concentrations increase to>8 μg/L, five days after the April 23rd precip-
itation event and six days after the May 4th Cyclone Fani event. δ18O
values become more enriched from 17 to 21 April, then gradually be-
come more depleted until 10 May at Everest Base Camp, except 1
May. Of the two days with highly enriched δ18O values at Everest Base
Camp (21 April, 1 May), δ18O values at Mt. Lobuche are similarly
enriched, collected on 1 May. The enriched δ18O values (−3.4 ±
1.1‰) from Mt. Lobuche are linked with the sublimation of recent
snow (Sokratov and Golubev, 2009) and melting on the surface.

Marine-sourced Na+ is linkedwith precipitation events, with gener-
ally higher Na+ concentrations immediately following precipitation
events, and decreased concentrations during dry periods. Exceptionally
high Na+ concentrations were noted on 2 May at Base Camp, with no
major preceding precipitation event, which could be associated with a
crustal source based on Si’s above-average values. The 4-day span of
the collection at Camp I and II sites have consistently depleted δ18O
values and below-average Na+ and Bi concentrations, with varying Si
and Pb. Consistent with previous studies in the Himalayas, our results
show that δ18O values in surface snow decrease with elevation; based
on the Base Camp, Camp I, and Camp II samples.

3.3. Cyclone Fani snow

We collected 24 snow samples from the largest snow accumulation
event of the Khumbu sampling season, caused by Cyclone Fani that oc-
curred from 3 May 17:00 to 4 May 22:00. Meteorological conditions
during Cyclone Fani were characterized by 10.2 mm of total precipita-
tion, average temperature of −0.4 °C, wind speed of 2.1 m/s, and rela-
tive humidity of 99.9%, from the Pyramid weather station (Fig. 5).
Cyclone Fani is considered to be one of the strongest pre-monsoon cy-
clone events ever recorded in the Bay of Bengal and is unique due to

its longevity, path, and timing (Mishra et al., 2020). To distinguish the
path of Cyclone Fani, we used the Lagrangian particle dispersion
model FLEXPART version 10.4 (Pisso et al., 2019) to explore moisture
source regions associated with precipitation events at Phortse (27.85°
N, 86.75° E). The model output presented in Fig. 6, shows the emission
sensitivity (%) of 10,000 released inert tracer particles during thematu-
ration hour of the Cyclone Fani storm event (5/3/2019 1600) over the
previous 72-h. Resulting backward trajectories during Cyclone Fani ex-
hibits similar features as the monsoon season (JJAS) backward trajecto-
ries from Perry et al. (2020), also noting sea surface temperatures in the

Fig. 5. Meteorological Data Compared with Atmospheric Tracers. Hourly meteorological
data of wind speed (bold black) and temperature (gray); precipitation (bold black) and
relative humidity (gray) from the Pyramid weather station (Sherpa et al., 2017)
(27.959°N, 86.813°E; 5035 m;) for the duration of the sampling period (4/16 to 5/11)
shown with δ18O (‰), Na+, Si, Bi, and Pb (μg/L) in surface snow for Everest Base Camp
(dark blue circle), Camp I and II (light blue triangle), and Mt. Lobuche (red square),
averaged by day, with error bars signifying 95% confidence intervals. Gray shading
marks significant snow events with precip. >1.5 mm. Hourly data is based on local
Nepal time or UTC+5:45. (For interpretation of the references to colour in this figure leg-
end, the reader is referred to the web version of this article.)
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Bay of Bengal as an important influence on precipitation rates in the
Khumbu region. Moreover, the notable cyclone developed during a pe-
riod of anomalously high sea surface temperature and high anthropo-
genic aerosol levels in the atmosphere above the Bay of Bengal (Zhao
et al., 2020).

From the 24 Cyclone Fani snow samples, the resulting chemistry is
characterized by elevatedmarine chemistry (Na+, Cl−, B, K+) and sulfur
(S, SO4

2−), lower concentrations of crustal elements and black carbon,
and consistently depleted δ18O values compared with Everest Base
Camp samples (Fig. 3, S5). In general, the pre-monsoon snow Na+/Cl−

ratio (0.55 ± 0.2) is low compared with the seawater ratio (0.86). The
Na+/Cl− ratio of Cyclone Fani is the highest of the snow samples groups
(0.67± 0.1), and by comparison, is most similar to the Khumbu Glacier
ice core and Khumbu Glaciermelt streams (Fig. S4), therefore reflecting
long-range transport of sea-salt source. The Cyclone Fani samples from
Everest Base Camp are enriched in Bi, Ni, Cs, Zn, Cd, Cu, S, and Sb, and
therefore likely from anthropogenic influences (Fig. 4).

3.4. Stream chemistry

We measured chemistry from six different locations (18 total), de-
fined within this study as Khumbu Glacier melt-streams (KGM):
KGM1 (5240 m) and KGM2 (5215m); Khumbu Valley streams: Dughla
(4820 m) and Pheriche (4320 m); and Imja Valley streams: Chukkung
(4630 m) and Imja (5000 m) (Fig. 1, Table S1). These locations were
chosen based on accessibility from the trekking path, location within
the vicinity of local villages (Chukkung, Pheriche, Dughla), and close-
ness to the stream water source (KGM, Imja). Overall, stream sample
concentrations are higher than snow and ice due to the combined influ-
ence of rock weathering, surface runoff, and glacier melt (Fig. 2). Pre-
monsoon stream chemical concentrations are greater than those during
themonsoon season, likely due to the dilution effect ofmonsoon precip-
itation (Raut et al., 2017).

For all stream measurements the most abundant elements (>1%
total concentration) measured are Si > Fe > Al > Ca > K > Mg >
Bi>S > Na > Mo. Ca2+ dominates stream waters at 82% of total cation
concentration and SO4

2− at 84% total anion concentration, followed by
Na+>K+>Mg2+ andNO3

−>Cl−, respectively. The stream δ18O values
are similar to the depleted snowvalues fromCyclone Fani and Camp I, II,
while more enriched when compared to the ice core values. PCA results
(Table S4) for the stream chemistry reflect crustal and anthropogenic
sources. Crustal-sourced PC1stream (e.g., K, Si, Al, Fe) with 58% of the var-
iance and PC2stream (e.g., S, Sr, Na+, Ca2+, SO4

2−) with 25% of the vari-
ance are suggestive of silicate and carbonate and sulfate weathering
(Balestrini et al., 2014; Reynolds et al., 1995), respectively. Potential

anthropogenic source metals dominate PC3stream (7%) (e.g., Pb, Bi, As)
and are negatively related to NO3

−, Cl−, and Ca2+.
Average concentrations of selected chemistry for the six stream

sample locations are shown in Fig. 7, including WHO drinking water
safety level guidelines (WHO, 2017). Additional chemistry measure-
ments and statistical overviews including rare earth elements are in-
cluded in the Supplementary Material (Fig. S2, S6; Table S3, S6). δ18O
values from surface waters in the Khumbu and Imja Valley regions
range from −15.1 to −18.4‰, whereas the Khumbu Glacier melt sur-
facewaters aremore depleted (−17.3 to−21.7‰). The KhumbuGlacier
melt stream samples from above Everest Basecamp (KGM1) exhibit the
lowest concentrations for all chemical species, followed by the KGM2,
reflecting proximity to glacial melt source and lack of geological mate-
rial chemical signatures detected downstream. Samples, collected
~300 m downstream of the Imja Lake, exhibits the highest concentra-
tions for Na+, Mg2+, SO4

2−, Na, S, B, Mo andW. Highest average concen-
trations of crustal elements (e.g., Si, Fe, Al, Mg) are measured in the
Chukkung samples, collected ~4.2 km downstream from the Imja Lake.
Dughla stream samples, taken ~9 km downstream from KGM2 and
150 m north of the Dughla settlement, has the highest concentrations
for K+, Ca2+, Ca, U, As, Sb, Sr, and Zn. About 5 km downstream from
the Dughla sample, the Pheriche sample location has the highest con-
centrations of P, Pb, Bi, Ag, Cd, Cs, Cu, and Li, in addition to all rare
earth elements. We note high enrichment factor calculations (>10)
for Bi and Cs for all stream sample locations and within select locations,
we calculate highly enrichedU, S, Cs, As,Mo, andPb (Fig. S7). For amore
complete assessment of enrichment values, further sampling of sedi-
ments in addition to stream samples is recommended.

4. Discussion

4.1. Sources and points of interest

Concentrations of almost all chemistry measurements from ice
cores, surface snow, and snowpits in previous studies have shown
higher pre-monsoon concentrations than those during the monsoon
season (Kang et al., 2007; Kaspari et al., 2014; Lee et al., 2008). Overall
highest atmospheric dust loading occurs during the late pre-monsoon
season, with more substantial contributions from the Taklamakan de-
sert and southern Tibetan Plateau, and additional transport from
North Africa, the Arabian Peninsula, Iran's arid regions, Pakistan,
Afghanistan, and the Indian sub-continent (Duchi et al., 2014). Based
on the snow chemistry, the influx of pre-monsoon dust deposition in
the Khumbu region is strongly dominated by Si, Fe, Al, K, and Mg,
reflected in PC1 of the snow chemistry. We find elevated Fe, Al, and

Fig. 6. Cyclone Fani Back Trajectories. Using Lagrangian particle dispersion model FLEXPART, showing the emission sensitivity (%) of 10,000 released inert tracer particles during the
maturation hour of the Cyclone Fani storm event (5/3/2019 1600) over the previous 72-h from Phortse (27.85° N, 86.75° E) based on ERA5 reanalysis data at the 300, 400 and 500 hPa
pressure level release. Refer to Supplementary Materials for further details about FLEXPART methodology. Figure created by Heather Guy.
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Mgconcentrations and reduced Ca andNa in our snowsamples compar-
atively to prior studies in the region, summarized in Table S7. This could
be due to our sampling timeframe during the pre-monsoon season.

Marine sourced chemistry, as demonstrated by PC2snow (e.g., Cl−,
Na+, B, K+), during the pre-monsoon season can reflect regional
sources (e.g., Bay of Bengal, Arabian Sea) (Kaspari et al., 2007; Ming
et al., 2007; Perry et al., 2020), and potentially more distant westerly
sources (e.g., Mediterranean Sea) (Shrestha et al., 2002). Dominated
by marine-sourced chemistry, Cyclone Fani has a similar chemical sig-
nature to the monsoon period, reflecting southerly sources based on
back trajectories (Fig. 6). To investigate apparent differences in chemi-
cal signatures between monsoon (dominated by southerly air masses)
and pre-monsoon (dominated bywesterly air masses) atmospheric de-
position,we observe the ratios in snow chemistry between Cyclone Fani
and Everest Base Camp. Ratios >0.5 forMo, SO4

2−, Na+, S, Cl−, K+, B, and
Zn suggest a stronger contribution of southerly air masses rather than
local/westerly sources. Prior precipitation data in theMt. Everest region
also shows higher Mo and Zn concentrations during themonsoon, sim-
ilar to ourfindings (Cong et al., 2015), aswell as in nearby alpine surface
waters (Raut et al., 2017).

The Cyclone Fani signature is similar to PC2snow, which is dominated
by marine source chemistry (Cl−, Na+) and comparable to PC3ice from
the Khumbu Glacier ice core (Table S4). The comparable signature ex-
hibited by Cyclone Fani snow samples and the Khumbu Glacier ice
core likely reflect the monsoon season captured within the ice core,
also signified by the proximity of Na+/Cl− ratios (closest to 0.86, seawa-
ter) and depleted δ18O values. The lower Na+/Cl− ratios, detected atMt.
Lobuche (Fig. S4), comparedwith seawater (excess Cl−) could bedue to
the scavenging of atmospheric HCl (Shrestha et al., 1997, 2002), which
has been found in fresh snow and snow pits in the northern Mt. Everest
region (Kang et al., 2004; Shrestha et al., 2002), in addition to fresh
snow from Cho Oyu in Tibet, about 25 km north-west of Mt. Everest
(Balerna et al., 2003).

Comparison of EFc values from Everest Base Camp and snow col-
lected after Cyclone Fani shows that snow deposited during Cyclone
Fani is similarly enriched in anthropogenic source elements as Everest
Base Camp. However, concentrations are much lower in the Cyclone
Fani snow samples. This suggests a similar source for the anthropogen-
ically enriched aerosols, but Cyclone Fani chemistry is likely diluted
more effectively en route due to the high precipitation associated with
this event. It's also likely that the aerosols are being diluted in the higher
snow amounts, due to a flux effect.

The non-marine and non-crustal source chemistry associated with
PC2snow (S, SO4

2−, NO3
−) is attributed to anthropogenic source aerosols

since this association is not found in the pre-modern period Khumbu
Glacier ice core samples. This signature's relationship with marine
airmasses could reflect their chemical behavior with sea-salts in wet
precipitation and co-emission of their precursors (i.e., SO2 and NOx)
from anthropogenic emissions (Liu et al., 2013). Previous work in the
Himalayas suggests that anions such as SO4

2− and NO3
− in precipitation

are likely derived from regional anthropogenic sources including brick
kilns, emissions from industry and agriculture, vehicle emissions, and
dung combustion for heating (Li et al., 2007; Tripathee et al., 2014b,
2020). K+, which is also prevalent in PC2snow, is also derived from bio-
mass burning.

Overall, the highest concentrations of heavy metals (e.g., Pb, Cs, Bi)
and black carbon, in addition to the most enriched elements, were de-
tected in the Everest Base Camp and Mt. Lobuche samples. We find
higher average concentrations of anthropogenic chemistry (Pb, Cs, U,
As, Bi) in our samples compared to several remote locations including
the Arctic, Antarctic, Pamir mountains, and northern Tibetan Plateau,
but lower concentrations than in more populated urban areas such as
Kathmandu and Hong Kong (Table S7). Bi emerges as a significant pol-
lutant with an average enriched value of ~100 in snow. High EFc values
in Bi have been previously reported in surface snow (~30) from Mt.
Everest's northeastern slope (Lee et al., 2008), a Miaoergou ice core
(~400) from the eastern Tien Shan (Liu et al., 2011), on the KhumbuGla-
cier (~100) and nearby Ngozumpa glacier (~70)(Casey, 2012). While
enriched Pb is only detected in the Mt. Lobuche samples, high concen-
trations of Pb are found in eight snow samples from Mt. Lobuche and
Everest Base Camp (5–14 μg/L), approaching or exceeding the World
Health Organization (WHO) drinking level standards (10 μg/L; WHO,
2017).

While we are unable to identify fixed source locations for anthropo-
genic source regions, we ran 36-h duration back trajectories for April 28
and May 2, 2019 (Fig. S8) where we observe high Bi and Pb, respect-
fully, in the Everest Base Camp samples (Fig. 5). The back trajectories in-
dicate western sources, across Nepal and India, for both pollutants,
however slightly varying trajectories such that April 28th (high Bi) has
a more northern, westerly trajectory around 29° and 30° N and May
2nd (high Pb)has amore southern trajectory around 25°N. Ourfindings
show there may be distinct provenances for different chemical species,
however further research is necessary to further distinguish the sources
of chemical signatures.

Fig. 7. StreamChemistry by SampleGroup. Average total concentrations of selected chemistry, specifically airmass tracer δ18O, crustal (Si, Fe, Al,Mg, Ca),marine (Na+, Cl−), anions (NO3
−, SO4

2−)
and known anthropogenically influenced chemistry (Pb, U, As, Bi, Cs), from stream samples fromKhumbuGlaciermelt streams: KGM1 (light blue circle, n=3), KGM2 (orange triangle, n=3);
Khumbu Valley streams: Dughla (green square, n= 3), Pheriche (purple diamond, n= 3); Imja Valley streams: Imja (gray ‘x’, n = 3), Chukkung (red star, n= 3). Drinking water safety level
guidelines are included as dark blue downward facing triangle for reference (WHO, 2017). Extended chemistry measurements are found in Supplementary Material. All error bars show 95%
confidence intervals. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Black carbonmeasurements have a statistically significant (p<0.05)
positive correlation (r> 0.8) with Ag, Na, Pb, Zn, and Cu when grouped
by daily averages for sample days (4/18–5/10) suggesting associated
transport and deposition. Black carbon concentrations in the Khumbu
are higher at elevations <6000 m, likely due to post-depositional pro-
cesses includingmelt and sublimation, in addition to greater deposition
at lower elevations (Kaspari et al., 2014). Accumulation of aerosols on
the snow between precipitation events could also be responsible for
higher concentrations of chemicals. Beyond the human health implica-
tions, high concentrations of impurities, including dust and black car-
bon, can decrease the albedo and increase snow/ice melt (Bonasoni
et al., 2010; Jacobi et al., 2015; Kaspari et al., 2014; Yasunari et al., 2010).

The East Rongbuk Glacier ice core, collected from the north side of
Mt. Everest (6500 m) and dated from 1650 to 2002 CE, is used to com-
pare our measurements for further support of pre-modern concentra-
tions (Fig. 2, S1). An increase in anthropogenic activities post-1950 is
noted based on increased concentrations of Bi, U, Cs, Ca, and S
(Kaspari et al., 2009b). We compare two-time frames from the East
Rongbuk ice core, before (1650–1950) and after 1950 (1950–2002),
where most selected elemental concentrations are higher than values
obtained from the Khumbu Glacier ice core and below-average snow
concentrations, with the exceptions of S and U. The comparison demon-
strates the northern side of Mt. Everest is more susceptible to crustal
and anthropogenic aerosol deposition, while the southern side has ele-
vated levels of S and U, which could be due to distinct local geology
(Kaspari et al., 2009b; Rengarajan et al., 2006) and/or atmospheric de-
position (Balestrini et al., 2016; Cong et al., 2010a, 2009). In general,
the Khumbu Glacier ice core chemistry is similar in composition to
pre-modern levels measured in the East Rongbuk Glacier ice core, dem-
onstrating an increase in anthropogenic pollution during the modern
period (Kaspari et al., 2009b).

Based on the PCA results for the stream data, the most dominant in-
fluences on the chemistry is the local geology of the Khumbu and Imja
stream locations, most likely silicate, carbonate, and sulfate weathering
(Balestrini et al., 2014; Reynolds et al., 1995; Wood et al., 2020). Com-
pared to the other streams sampled, the upper Khumbu Glacier melt
stream (KGM1) concentrations are lowest, followed by the lower
Khumbu Glacier melt stream (KGM2) except for NO3

− and Cl−, indicat-
ing a lesser influence from chemical weathering (Fig. 7). Similar δ18O
values of KGM2 to the Khumbu Glacier ice core also suggest a stronger
influence of snow/ice melt (Wood et al., 2020). More enriched δ18O
values in the Imja Valley streams could be from evaporation losses
(Biggs et al., 2015) due to their origin from a large glacial lake sourced
from Imja Glacier melt. The Khumbu and Imja Valley samples exhibit
similar concentrations for crustal elements, while the Pheriche location
has higher concentrations for anthropogenically sourced chemistry (Pb,
Cs, Bi, Cd, Ag, Cu).We note somewhat elevated concentrations of crustal
elements (Si, Fe, Al) and considerably higher concentrations in several
anthropogenic elements (Pb, Cs, U) in comparison to surface waters in
the broader region of Nepal (Table S7).

Concentrations of Na+ and Cl− in KGM streams are likely from
long-range transport of sea-salt and ice melt based on their similar-
ity to the average Na+/Cl− of 0.92 (seawater: 0.86). Average ratios
from the Imja (4.5), Chukkung (10.4), Dughla (6.3), and Pheriche
(9.6) samples signify an additional crustal source for Na+, also indi-
cated by a previous study with a ratio of 10.5 from Khumbu Valley
streams (Balestrini et al., 2014) (Fig. S4). Anthropogenic influences
in the stream samples are reflected in PC3 (7% variance) dominated
by anthropogenic-source metals (Pb, Bi, As) and enriched EFc values
of Bi, U, S, Cs, As, Mo, and Pb (Fig. 4). Enriched values in KGM streams
likely reflect long-distance transport of anthropogenic aerosols de-
posited on the Khumbu Glacier. Although there are few studies on
the chemical composition of streams or lake water from the high
Himalayas, a previous study of alpine lake elemental chemistry in
Nepal indicates enriched values of As, Ag, Mo, Zn, and Pb (Raut
et al., 2017), similar to our study.

4.2. Watershed pollution implications

The recent Hindu Kush Himalaya assessment (Saikawa et al., 2019)
identifies pollution as an increasingly severe threat to biodiversity, eco-
systems, and human well-being, demonstrating the need for more ex-
tensive research regarding pollution in remote regions (Miner et al.,
2020). Of the enriched elements measured in snow and streams in
this study, most (Bi, U, As, Pb, Ni, Cs, Zn, Cd, Sb, Cu, S, Mo) are attributed
to the long-range transport of aerosols from human sources (Nriagu,
1989; Pacyna and Pacyna, 2001). These are considered to be anthropo-
genically sourced in other Himalayan studies of snow and ice (Casey,
2012; Cong et al., 2010a; Dong et al., 2015; Gabrielli et al., 2020;
Kaspari et al., 2009b; Lee et al., 2008; Tripathee et al., 2014a). Ice core re-
cords from the north side of Mt. Everest demonstrates that Bi, U, Cs, S,
As, and Sb increased since the 1950s due to anthropogenic activities
(Hong et al., 2009; Kaspari et al., 2009b), which has a similar chemical
composition to that of the Khumbu Glacier ice core.

To assess the potential health risks associated with the water from
the Khumbu region, we compare the major and trace element concen-
trations to safety guidelines. High concentrations of U (14–26 μg/L), ap-
proaching WHO safety guidelines (30 μg/L; WHO, 2017) are evident in
streams sampled at Pheriche, Chukkung, Dughla, and Imja sampling
sites, but not in stream samples KGM 1 and 2. High concentrations of
U have been noted in glacier meltwater streams from the Khumbu
(Reynolds et al., 1995) and are most likely sourced from chemical rock
weathering, from local limestone, gypsum, or dolomite (Dossi et al.,
2007). Based on WHO safety guidelines, the concentrations of Fe and
Al at all stream sampling sites, except the Khumbu Glacier melt stream,
exceed safe levels, although they are likely associated with natural pro-
cesses (weathering and erosion) and land usage (Jenkins et al., 1995;
Reynolds et al., 1995). Recent studies suggest climate change could con-
tribute to increased weathering, melting permafrost, and falling water
tables associated with rising metals and ions in watersheds (Manning
et al., 2013; Todd et al., 2012).

Anthropogenic influences are evident at some stream sample loca-
tions, most noticeably in the Khumbu Valley streams at the Pheriche
site. We find high Pb concentrations (21.4 ± 0.6 μg/L) at the Pheriche
sampling site (Fig. 8), which is more than double the WHO safety
level Pb value of 10 μg/L (WHO, 2017).Weobserve a significant 500% in-
crease in average Pb concentrations from theDughla to Pheriche sample
locations (about 5 km apart), in addition to greater than 200% in other
metal concentrations (Bi, Cs, Cu, Ag, Th, Sc, Mn). Although several stud-
ies on heavymetals in the region have not detected concerning levels of
Pb in surfacewaters (Ghimire et al., 2014; Paudyal et al., 2016; Reynolds
et al., 1995), a 2012 study found Pb levels exceedingWHO guidelines in
Gokyo lake water samples (Sharma et al., 2012). Long-range transport
of pollutants during themonsoon season is noted as Pb’s primary source
in the Gokyo lakes (Sharma et al., 2012). Based on Pb’s high concentra-
tions and the significant increase between the Dughla and Pheriche
sites, we suggest potential contamination caused by unknown human
activity upstream of the Pheriche sampling site (Fig. 8). A secondary
source of water inflow, not related to Khumbu Glacier melt, is also pos-
sible; however, further research is necessary to determine a source.

While trace metals have not been previously identified as a health
concern in the Khumbu Valley stream systems (Chevallier et al., 2020;
Ghimire et al., 2014; Reynolds et al., 1995), water quality is projected
to decline with warming and increased human emissions (Ghimire
et al., 2013a; Nicholson et al., 2016, 2019). We found elevated concen-
trations of NO3

− and Cl− in the KGM2 samples compared with the
KGM1 samples, collected directly downstream and upstream, respec-
tively, from Everest Base Camp (Fig. 7). One study suggests increased
concentrations of TN-NO3

− (total nitrogen as nitrate), among other pa-
rameters, were observed in a three-year-long lake study in the
Sagarmatha National Park that may be linked to increases in human
waste (Ghimire et al., 2013b). Likely, two-thirds of the local domestic
water supply during the dry, pre-monsoon season comes from the
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meltwater of local glaciers such as the Khumbu Glacier (Wood et al.,
2020). The local population of 3500–6000 people, in addition to the
around 57,000 seasonal trekkers, climbers, and local support teams, de-
pend on stream water derived from Khumbu Glacier melt for various
purposes suggesting the need for future monitoring (Government of
Nepal, 2020).

4.3. Directions for future research

This study, while beneficial, is limited by the number of samples col-
lected and the timeframe of sampling. The Khumbu region would ben-
efit from long-term, detailed monitoring of atmospheric and
environmental chemistry to assess domestic water supply and potential
sources of pollution. Rapid changes in glacier loss and precipitation
(King et al., 2020; Perry et al., 2020), accumulation of chemicals and am-
plification of glacial melt from long-range transport of soot (Gul et al.,
2021; Jacobi et al., 2015), and increased pressure on natural resources
from the tourism industry (Aubriot et al., 2019; Chevallier et al., 2020;
Wood et al., 2020) are just a few examples of current and future hazards
in the Khumbu region. Tourism is of extreme economic importance in

this area, so assuring the local environment is protected for long-term
use is a priority. Because of the accessibility from tourism, further re-
search on environmental chemistry in the Khumbu could be used
as a guideline for other glaciated areas in the Himalayas impacted
by trekkers or long-range pollutants. There is also the opportunity
for researchers to partner with Sherpas and local villagers as a
means of citizen science, which would allow them to be a part of
the monitoring process in addition to valuing local knowledge
(Sherpa et al., 2020).

For future monitoring of streams to be valuable, it would require
continuous sampling for physical (e.g., pH, temperature, conductivity),
chemical (e.g., major ions, trace elements measured here including
Hg), and biological (e.g., coliform, E. coli) parameters (Ghimire et al.,
2014, 2013a; Nicholson et al., 2016, 2019).While it would bemost ben-
eficial to collect samples year-round, the dry pre-monsoon season
should be prioritized since it is less likely to be impacted by the precip-
itation dilution effect. Samples should be collected continuously from
the same site locations, which should be spread out through the
Khumbu and Imja regions to assess the impact of increasing population
and elevation.

Fig. 8. Pb Concentrations by Sample Location. Shaded map of the regional area with location of snow (yellow), stream (red), and ice core samples (green), as well as the current glacial
extent (aqua), stream paths (turquoise), and main trekking and climbing routes (gray). The size of each circle indicates Pb concentrations by location of sample in μg/L. Snow sample
group locations identified as the following: a) Basecamp, b) Camp I,II, and c) Mt. Lobuche. Stream sample locations identified as the following: 1) KGM1, 2) KGM2, 3) Dughla,
4) Pheriche, 5) Chukkung, and 6) Imja. Glacial extent is sourced from the 2018 GLIMS glacier database (Raup et al., 2007), and polygons for the Everest area glaciers are extracted from
the 2014 GLIMS dataset. Figure created by Sam Guilford. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Further research on the transport and deposition of atmospheric
chemistry in the Khumbu region would facilitate our understanding of
source regions for different pollutants. A network of weather stations
installed in different areas of the Khumbu (Phortse, Everest Basecamp,
Camp II, South Col, Balcony) as part of our expedition in 2019
(Matthews et al., 2020) would pair well with continuous atmospheric
measurements, as demonstrated by studies on pollutants (i.e., O3 and
black carbon) and atmospheric aerosol properties from the Nepal
Climate Observatory (e.g., Bonasoni et al., 2010, 2008; Marcq et al.,
2010; Sellegri et al., 2010; Yasunari et al., 2010). Based on our results,
measuring heavy metals such as Pb and Bi, in addition to other trace
elements, in the atmosphere and snow could help fingerprint anthropo-
genic pollutant source regions. Additionally, measuring the combina-
tion of elemental and mineralogical composition from snow samples
could create an improved representation of the chemical and physical
aerosol properties from diverse geographic locations and depositional
environments (Alfonso et al., 2019; Cong et al., 2010a; Dong et al.,
2016; Gao et al., 2018).

5. Conclusions

Here we present a comprehensive case study of surface snow,
streams, and ice chemical composition in the Khumbu region.We iden-
tifiedmajor and trace elements, major ions, black carbon, and stable iso-
topes. Our findings document the 2019 pre-monsoon season, detailing
chemistry from Cyclone Fani, spatial variability in snow and stream
chemistry, and addressing potential pollution hazards. From snow
chemistry, we find the pre-monsoon season is dominated by western
air mass sources containing crustal elements and less frequent south-
erly marine air mass sources. The Khumbu and Imja Valley stream
chemistry is strongly influenced by weathering and local geology,
while Khumbu Glacier melt streams show strong correspondence
to ice melt. Concerning concentrations of metals from natural and
anthropogenic sources are found in Khumbu streams and warrant
further research. We note that increased local tourism and land use
are likely contributors to high metal concentrations in the stream
samples. In addition, human waste at Everest Base Camp could be
contributing to degraded water quality. Rising tourism in the
Khumbu Valley and surrounding regions will likely contribute to
greater pollutant loading, with important implications for the popu-
lation of the Khumbu Valley who rely on this water source. With cli-
mate change and tourism increasing vulnerability in the Khumbu
region, we find sufficient evidence of water quality degradation to
suggest increased spatiotemporal environmental monitoring is
needed in the Khumbu region.
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