1,909 research outputs found
Intermediate Mass Black Hole Induced Quenching of Mass Segregation in Star Clusters
In many theoretical scenarios it is expected that intermediate-mass black
holes (IMBHs, with masses M ~ 100-10000 solar masses) reside at the centers of
some globular clusters. However, observational evidence for their existence is
limited. Several previous numerical investigations have focused on the impact
of an IMBH on the cluster dynamics or brightness profile. Here we instead
present results from a large set of direct N-body simulations including single
and binary stars. These show that there is a potentially more detectable IMBH
signature, namely on the variation of the average stellar mass between the
center and the half-light radius. We find that the existence of an IMBH
quenches mass segregation and causes the average mass to exhibit only modest
radial variation in collisionally relaxed star clusters. This differs from when
there is no IMBH. To measure this observationally requires high resolution
imaging at the level of that already available from the Hubble Space Telescope
(HST) for the cores of a large sample of galactic globular clusters. With a
modest additional investment of HST time to acquire fields around the
half-light radius, it will be possible to identify the best candidate clusters
to harbor an IMBH. This test can be applied only to globulars with a half-light
relaxation time less than or equal to 1 Gyr, which is required to guarantee
efficient energy equipartition due to two-body relaxation.Comment: 15 pages, 3 figures, ApJ, in pres
Loss of Nmp4 optimizes osteogenic metabolism and secretion to enhance bone quality
A goal of osteoporosis therapy is to restore lost bone with structurally sound tissue. Mice lacking the transcription factor Nuclear Matrix Protein 4 (Nmp4, Zfp384, Ciz, ZNF384) respond to several classes of osteoporosis drugs with enhanced bone formation compared to wild type (WT) animals. Nmp4-/- mesenchymal stem/progenitor cells (MSPCs) exhibit an accelerated and enhanced mineralization during osteoblast differentiation. To address the mechanisms underlying this hyper-anabolic phenotype, we carried out RNA-sequencing and molecular and cellular analyses of WT and Nmp4-/- MSPCs during osteogenesis to define pathways and mechanisms associated with elevated matrix production. We determined that Nmp4 has a broad impact on the transcriptome during osteogenic differentiation, contributing to the expression of over 5,000 genes. Phenotypic anchoring of transcriptional data was performed for the hypothesis-testing arm through analysis of cell metabolism, protein synthesis and secretion, and bone material properties. Mechanistic studies confirmed that Nmp4-/- MSPCs exhibited an enhanced capacity for glycolytic conversion- a key step in bone anabolism. Nmp4-/- cells showed elevated collagen translation and secretion. Expression of matrix genes that contribute to bone material-level mechanical properties were elevated in Nmp4-/- cells, an observation that was supported by biomechanical testing of bone samples from Nmp4-/- and WT mice. We conclude that loss of Nmp4 increases the magnitude of glycolysis upon the metabolic switch, which fuels the conversion of the osteoblast into a super-secretor of matrix resulting in more bone with improvements in intrinsic quality
981-46 Impact of a Comprehensive Management Program on the Hospitalization Rate for Patients with Advanced Heart Failure
Patients with advanced heart failure have a course that is often characterized by frequent hospitalizations and progressive deterioration. These patients are commonly referred to specialized centers for consideration of heart transplantation (Tx). To assess the impact of the changes in therapy made in conjunction with heart transplantation evaluation on patient outcomes, we assessed the hospitalization rate and patient's functional status in the 6 months prior to referral compared to the 6 months after referral. Since 1/91, 214 patients were evaluated, accepted for Tx, and discharged having undergone adjustments in medical therapy and a comprehensive patient education program. At time of referral patients had mean LVEF 0.21, NYHA class 3.3, VO2 max 11.0ml/kg, and had undergone a total of 429 hospitalizations in the previous 6 months. During evaluation patients had their ACE inhibitor dose increased by a mean 91.5mg/day of captopril or the equivalent, were diuresed a mean 4.2 liters, were placed on a flexible regimen of loop diuretics, and were counseled on dietary management and home based progressive aerobic exercise. After 6 months of follow-up there were only 63 hospitalizations required (mean hospitalization rate per patient over the 6 months pre-evaluation 2.00±1.45 vs post-evaluation 0.29±0.53 p<0.00001). Patient's NYHA class improved to 2.4 (p<0.0001) and VO2 max increased to 15.2 (p<0.001). Excluding the 12 elective status Tx, 14 urgent status Tx, and 9 deaths within 6 months yielded similar results (344 pre vs 34 post-evaluation hospitalizations). 64 patients (30%) improved their functional status to the point that transplantation was deferred in favor of sustained medical therapy.Referral to a heart failure specialty program is associated with a dramatic occurred between day 10±1 and 3 month. 4 patients died after hospital discharge (no death directly related to thromboembolic disease). Thus no higher risk of PE can be seen in patients with free floating prox-DVT and anticoagulant therapy should be efficient to prevent recurrent PE in such patient
948-46 Preserved Cardiac Baroreflex Control of Renal Cortical Blood Flow in Advanced Heart Failure Patients: A Positron Emission Tomography Study
Cardiac baroreflex (CBR) control of forearm blood flow (FBF) is blunted or reversed in humans with heart failure (HF). but little is known about CBR control of renal cortical blood flow (RCBF) in HF due to technical limitations. Positron emission tomography (PET) 0–15 water is a new, precise method to measure RCBF quantitatively. We compared CBR control of RCBF and FBF (venous plethysmography) in 8 patients with HF (mean age, 47±3 y, ejection fraction 0.25±0.02) and 10 normal humans (mean age 35±5 y) during CBR unloading with phlebotomy (450ml). In 5 normals, cold pressor test was used as a strong, non-baroreflex mediated stimulus to vasoconstriction.ResultsPhlebotomy decreased central venous pressure (p <0.001), but did not change mean arterial pressure or heart rate in HF patients or controls. The major findings of the study are: 1) At rest, RCBF is markedly diminished in HF vs normals (2.4±0.1 vs 4.3±0.2ml/min/g, p < 0.001). 2) In normal humans during phlebotomy, FBF decreased substantially (basal vs phlebotomy: 3.3±0.4 vs 2.6±0.3 ml/min/100 ml, p=0.021, and RCBF decreased slightly, but significantly (basal vs phlebotomy: 4.3±0.2 vs 4.0±0.3 ml/min/g, p=0.01). 3) The small magnitude of reflex renal vasoconstriction is not explained by the inability of the renal circulation to vasoconstrict since the cold pressor stimulus induced substantial decreases in RCBF in normals (basal vs cold pressor: 4.4±0.1 vs 3.7±0.1 ml/min/g, p=0.003). 4) In humans with heart failure during phlebotomy, FBF did not change (basal vs phlebotomy: 2.6±0.3 vs 2.7±0.2 ml/min/100 ml, p=NS), but RCBF decreased slightly but significantly (basal vs phlebotomy: 2.4±0.1 vs 2.1±0.1 ml/min/g, p=0.01). Thus, in patients with heart failure, there is an abnormality in cardiopulmonary baroreflex control of the forearm circulation, but not the renal circulationConclusionThis study 1) shows the power of PET to study physiologic and pathophysiologic reflex control of the renal circulation in humans, and 2) describes the novel finding of selective dysfunction of cardiac baroreflex control of the forearm circulation, but its preservation of the renal circulation, in patients with heart failur
Improving survival for patients with advanced heart failure: A study of 737 consecutive patients
Objectives.This study sought to determine whether survival and risk of sudden death have improved for patients with advanced heart failure referred for consideration for heart transplantation as advances in medical therapy were systematically implemented over an 8-year period.Background.Recent survival trials in patients with mild to moderate heart failure and patients after a myocardial infarction have shown that angiotensin-converting enzyme inhibitors are beneficial, type I antiarrhythmic drugs can be detrimental, and amiodarone may be beneficial in some groups. The impact of advances in therapy may be enhanced or blunted when applied to severe heart failure.Methods.One-year mortality and sudden death were determined in relation to time, baseline variables and therapeutics for 737 consecutive patients referred for heart transplantation and discharged home on medical therapy from 1986 to 1988, 1989 to 1990 and 1991 to 1993. Medical care was directed by a single team of physicians with policies established by consensus. From 1986 to 1990, the hydralazine/isosorbide dinitrate combination or angiotensin-converting enzyme inhibitors were the initial vasodilators, and class I antiarrhythmic drugs were allowed. After 1990, captopril was the initial vasodilator, given to 86% of patients compared with 46% of patients before 1989. After mid-1989, class I agents were routinely withdrawn, and amiodarone was used for frequent ventricular ectopic beats or atrial fibrillation (53% of patients after 1990 vs. 10% before 1989).Results.The total 1-year mortality rate decreased from 33% before 1989 to 16% after 1990 (p = 0.0001), and sudden death decreased from 20% to 8% (p = 0.0006). Adjusted for clinical and hemodynamic variables in multivariate proportional hazards models, total mortality and sudden death were lower after 1990.Conclusions.The large reduction in mortality, particularly in sudden death, from advanced heart failure since 1990 may reflect an enhanced impact of therapeutic advances shown in large randomized trials when they are incorporated into a comprehensive approach in this population. This improved survival supports the growing practice of maintaining potential heart transplant candidates on optimal medical therapy until clinical decompensation mandates transplantation
Evaluation of Cage Designs and Feeding Regimes for Honey Bee (Hymenoptera: Apidae) Laboratory Experiments
The aim of this study was to improve cage systems for maintaining adult honey bee (Apis mellifera L.) workers under in vitro laboratory conditions. To achieve this goal, we experimentally evaluated the impact of different cages, developed by scientists of the international research network COLOSS (Prevention of honey bee COlony LOSSes), on the physiology and survival of honey bees. We identified three cages that promoted good survival of honey bees. The bees from cages that exhibited greater survival had relatively lower titers of deformed wing virus, suggesting that deformed wing virus is a significant marker reflecting stress level and health status of the host. We also determined that a leak- and drip-proof feeder was an integral part of a cage system and a feeder modified from a 20-ml plastic syringe displayed the best result in providing steady food supply to bees. Finally, we also demonstrated that the addition of protein to the bees' diet could significantly increase the level of vitellogenin gene expression and improve bees' survival. This international collaborative study represents a critical step toward improvement of cage designs and feeding regimes for honey bee laboratory experiment
Combination of electroweak and QCD corrections to single W production at the Fermilab Tevatron and the CERN LHC
Precision studies of the production of a high-transverse momentum lepton in
association with missing energy at hadron colliders require that electroweak
and QCD higher-order contributions are simultaneously taken into account in
theoretical predictions and data analysis. Here we present a detailed
phenomenological study of the impact of electroweak and strong contributions,
as well as of their combination, to all the observables relevant for the
various facets of the p\smartpap \to {\rm lepton} + X physics programme at
hadron colliders, including luminosity monitoring and Parton Distribution
Functions constraint, precision physics and search for new physics signals.
We provide a theoretical recipe to carefully combine electroweak and strong
corrections, that are mandatory in view of the challenging experimental
accuracy already reached at the Fermilab Tevatron and aimed at the CERN LHC,
and discuss the uncertainty inherent the combination. We conclude that the
theoretical accuracy of our calculation can be conservatively estimated to be
about 2% for standard event selections at the Tevatron and the LHC, and about
5% in the very high transverse mass/lepton transverse momentum tails. We
also provide arguments for a more aggressive error estimate (about 1% and 3%,
respectively) and conclude that in order to attain a one per cent accuracy: 1)
exact mixed corrections should be computed in
addition to the already available NNLO QCD contributions and two-loop
electroweak Sudakov logarithms; 2) QCD and electroweak corrections should be
coherently included into a single event generator.Comment: One reference added. Final version to appear in JHE
- …