16,453 research outputs found
Addendum to "Coherent Lagrangian vortices: The black holes of turbulence"
In Haller and Beron-Vera (2013) we developed a variational principle for the
detection of coherent Lagrangian vortex boundaries. The solutions of this
variational principle turn out to be closed null-geodesics of the Lorentzian
metric associated with a generalized Green-Lagrange strain tensor family. This
metric interpretation implies a mathematical analogy between coherent
Lagrangian vortex boundaries and photon spheres in general relativity. Here we
give an improved discussion on this analogy.Comment: Revised 27 June 201
Coherent Lagrangian vortices: The black holes of turbulence
We introduce a simple variational principle for coherent material vortices in
two-dimensional turbulence. Vortex boundaries are sought as closed stationary
curves of the averaged Lagrangian strain. Solutions to this problem turn out to
be mathematically equivalent to photon spheres around black holes in cosmology.
The fluidic photon spheres satisfy explicit differential equations whose
outermost limit cycles are optimal Lagrangian vortex boundaries. As an
application, we uncover super-coherent material eddies in the South Atlantic,
which yield specific Lagrangian transport estimates for Agulhas rings.Comment: To appear in JFM Rapid
Selectivity of Metsulfuron Methyl to Six Common Littoral Species in Florida
Many Central Florida lakes, particularly those in the Kissimmee
River watershed, are maintained 0.5 to 1.0 m lower than historic (pre-1960) levels during the summer hurricane
season for flood control purposes. These lower water levels
have allowed proliferation and formation of dense monotypic
populations of pickerelweed (
Pontederia cordata
L.) and
other broadleaf species that out compete more desirable native
grasses (Hulon, pers. comm., 2002). Due to the limited
availability of data on the effects of metsulfuron methyl on
wetland plants, particularly in Florida, the present study was
carried out with the objective of testing its phytotoxicity on
six wetland species, to determine the feasibility of its use for
primary pickerelweed control
Gauge equivalence in QCD: the Weyl and Coulomb gauges
The Weyl-gauge ( QCD Hamiltonian is unitarily transformed to a
representation in which it is expressed entirely in terms of gauge-invariant
quark and gluon fields. In a subspace of gauge-invariant states we have
constructed that implement the non-Abelian Gauss's law, this unitarily
transformed Weyl-gauge Hamiltonian can be further transformed and, under
appropriate circumstances, can be identified with the QCD Hamiltonian in the
Coulomb gauge. We demonstrate an isomorphism that materially facilitates the
application of this Hamiltonian to a variety of physical processes, including
the evaluation of -matrix elements. This isomorphism relates the
gauge-invariant representation of the Hamiltonian and the required set of
gauge-invariant states to a Hamiltonian of the same functional form but
dependent on ordinary unconstrained Weyl-gauge fields operating within a space
of ``standard'' perturbative states. The fact that the gauge-invariant
chromoelectric field is not hermitian has important implications for the
functional form of the Hamiltonian finally obtained. When this nonhermiticity
is taken into account, the ``extra'' vertices in Christ and Lee's Coulomb-gauge
Hamiltonian are natural outgrowths of the formalism. When this nonhermiticity
is neglected, the Hamiltonian used in the earlier work of Gribov and others
results.Comment: 25 page
Carfentrazone-ethyl Pond Dissipation and Efficacy on Floating Plants
Carfentrazone-ethyl (CE) is a reduced risk herbicide that
is currently being evaluated for the control of aquatic weeds.
Greenhouse trials were conducted to determine efficacy of
CE on water hyacinth (
Eichhornia crassipes
(Mart.) Solms-
Laub.), water lettuce (
Pistia stratiotes
L.), salvinia (
Salvinia
minima
Baker) and landoltia
(Landoltia punctata
(G. Mey.)
Les & D. J. Crawford
)
. CE controlled water lettuce, water hyacinth
and salvinia at rates less than the maximum proposed
use rate of 224 g ha
-1
. Water lettuce was the most susceptible
to CE with an EC
90
of 26.9 and 33.0 g ha
-1
in two separate trials.
Water hyacinth EC
90
values were calculated to be 86.2 to
116.3 g ha
-1
, and salvinia had a similar susceptibility to water
hyacinth with an EC
90
of 79.1 g ha
-1
. Landoltia was not adequately
controlled at the rates evaluated. In addition, CE was
applied to one-half of a 0.08 ha pond located in North Central,
Florida to determine dissipation rates in water and hydrosoil
when applied at an equivalent rate of 224 g ha
-1
. The
half-life of CE plus the primary metabolite, CE-chloropropionic
acid, was calculated to be 83.0 h from the whole pond,
and no residues were detected in water above the limit of
quantification (5 μg L
-1
) 168 h after treatment. CE dissipated
rapidly from the water column, did not occur in the sediment
above the levels of quantification, and in greenhouse
studies effectively controlled three species of aquatic weeds
at relatively low rates.(PDF contains 6 pages.
Precision Measurements of Stretching and Compression in Fluid Mixing
The mixing of an impurity into a flowing fluid is an important process in
many areas of science, including geophysical processes, chemical reactors, and
microfluidic devices. In some cases, for example periodic flows, the concepts
of nonlinear dynamics provide a deep theoretical basis for understanding
mixing. Unfortunately, the building blocks of this theory, i.e. the fixed
points and invariant manifolds of the associated Poincare map, have remained
inaccessible to direct experimental study, thus limiting the insight that could
be obtained. Using precision measurements of tracer particle trajectories in a
two-dimensional fluid flow producing chaotic mixing, we directly measure the
time-dependent stretching and compression fields. These quantities, previously
available only numerically, attain local maxima along lines coinciding with the
stable and unstable manifolds, thus revealing the dynamical structures that
control mixing. Contours or level sets of a passive impurity field are found to
be aligned parallel to the lines of large compression (unstable manifolds) at
each instant. This connection appears to persist as the onset of turbulence is
approached.Comment: 5 pages, 5 figure
Persistent Transport Barrier on the West Florida Shelf
Analysis of drifter trajectories in the Gulf of Mexico has revealed the
existence of a region on the southern portion of the West Florida Shelf (WFS)
that is not visited by drifters that are released outside of the region. This
so-called ``forbidden zone'' (FZ) suggests the existence of a persistent
cross-shelf transport barrier on the southern portion of the WFS. In this
letter a year-long record of surface currents produced by a Hybrid-Coordinate
Ocean Model simulation of the WFS is used to identify Lagrangian coherent
structures (LCSs), which reveal the presence of a robust and persistent
cross-shelf transport barrier in approximately the same location as the
boundary of the FZ. The location of the cross-shelf transport barrier undergoes
a seasonal oscillation, being closer to the coast in the summer than in the
winter. A month-long record of surface currents inferred from high-frequency
(HF) radar measurements in a roughly 60 km 80 km region on the WFS off
Tampa Bay is also used to identify LCSs, which reveal the presence of robust
transient transport barriers. While the HF-radar-derived transport barriers
cannot be unambiguously linked to the boundary of the FZ, this analysis does
demonstrate the feasibility of monitoring transport barriers on the WFS using a
HF-radar-based measurement system. The implications of a persistent cross-shelf
transport barrier on the WFS for the development of harmful algal blooms on the
shoreward side of the barrier are considered.Comment: Submitted to Geophysical Research Letter
Quantum Gauge Equivalence in QED
We discuss gauge transformations in QED coupled to a charged spinor field,
and examine whether we can gauge-transform the entire formulation of the theory
from one gauge to another, so that not only the gauge and spinor fields, but
also the forms of the operator-valued Hamiltonians are transformed. The
discussion includes the covariant gauge, in which the gauge condition and
Gauss's law are not primary constraints on operator-valued quantities; it also
includes the Coulomb gauge, and the spatial axial gauge, in which the
constraints are imposed on operator-valued fields by applying the
Dirac-Bergmann procedure. We show how to transform the covariant, Coulomb and
spatial axial gauges to what we call
``common form,'' in which all particle excitation modes have identical
properties. We also show that, once that common form has been reached, QED in
different gauges has a common time-evolution operator that defines
time-translation for states that represent systems of electrons and photons.
By combining gauge transformations with changes of representation from
standard to common form, the entire apparatus of a gauge theory can be
transformed from one gauge to another.Comment: Contribution for a special issue of Foundations of Physics honoring
Fritz Rohrlich; edited by Larry P. Horwitz, Tel-Aviv University, and Alwyn
van der Merwe, University of Denver (Plenum Publishing, New York); 40 pages,
REVTEX, Preprint UCONN-93-3, 1 figure available upon request from author
Design and Fabrication of the NASA Decoupler Pylon for the F-16 Aircraft
The NASA Decoupler Pylon is a passive means of suppressing wing-store flutter. The feasibility of demonstrating this concept on the F-16 aircraft was established through model wind tunnel tests and analyses. As a result of these tests and studies a ship set of Decoupler Pylons was designed and fabricated for a flight test demonstration on the F-16 aircraft. Basic design criteria were developed during the analysis study pertaining to pylon pitch stiffness, alignment system requirements, and damping requirements. A design was developed which utilized an electrical motor for the pylon alignment system. The design uses a four pin, two link pivot design which results in a remote pivot located at the center of gravity of the store when the store is in the aligned position. The pitch spring was fabricated from a tapered constant stress cantilevered beam. The pylon has the same external lines as the existing production pylon and is designed to use a MAU-12 ejection rack which is the same as the one used with the production pylon. The detailed design and fabrication was supported with a complete ground test of the pylon prior to shipment to NASA
- …