970 research outputs found

    Early-life antibiotic usage and impact on the gut microbiota, including emergence of antimicrobial resistant Enterococcus

    Get PDF
    The early-life microbiota is an ‘immature’ and highly dynamic microbial ecosystem, which is central to infant health. Both perinatal and postnatal factors can impact the gut microbiota, with antibiotics proposed to cause short and longer-term disturbances. Antibiotics not only impact microbial community composition but also contribute to the overall antibiotic resistance profile, i.e. the ‘resistome’, and they may also enhance carriage of multi-drug-resistant bacteria. Given high antibiotic prescription practices in pregnant women and newborns this also contributes to the global threat of antimicrobial resistance. This review summarises the current literature on antibiotic usage and how this may impact the developing gut microbiota during early-life, including the influence of horizontal gene transfer on contributions to pathogenicity and resistance of gut bacteria. We also focus on Enterococcus spp. given their high levels in infants and their link with opportunistic infections that are a significant cause of morbidity and mortality during early-life. Finally, a perspective on the importance to antibiotic stewardship, and harnessing the microbiota itself for anti-infection therapies for reducing antibiotic usage are also covered

    Improving causality in microbiome research:can human genetic epidemiology help?

    Get PDF
    Evidence supports associations between human gut microbiome variation and multiple health outcomes and diseases. Despite compelling results from in vivo and in vitro models, few findings have been translated into an understanding of modifiable causal relationships. Furthermore, epidemiological studies have been unconvincing in their ability to offer causal evidence due to their observational nature, where confounding by lifestyle and behavioural factors, reverse causation and bias are important limitations. Whilst randomized controlled trials have made steps towards understanding the causal role played by the gut microbiome in disease, they are expensive and time-consuming. This evidence that has not been translated between model systems impedes opportunities for harnessing the gut microbiome for improving population health. Therefore, there is a need for alternative approaches to interrogate causality in the context of gut microbiome research. The integration of human genetics within population health sciences have proved successful in facilitating improved causal inference (e.g., with Mendelian randomization [MR] studies) and characterising inherited disease susceptibility. MR is an established method that employs human genetic variation as natural “proxies” for clinically relevant (and ideally modifiable) traits to improve causality in observational associations between those traits and health outcomes. Here, we focus and discuss the utility of MR within the context of human gut microbiome research, review studies that have used this method and consider the strengths, limitations and challenges facing this research. Specifically, we highlight the requirements for careful examination and interpretation of derived causal estimates and host (i.e., human) genetic effects themselves, triangulation across multiple study designs and inter-disciplinary collaborations. Meeting these requirements will help support or challenge causality of the role played by the gut microbiome on human health to develop new, targeted therapies to alleviate disease symptoms to ultimately improve lives and promote good health

    Recent advances in understanding the neonatal microbiome

    Get PDF
    The neonatal developmental window represents a key time for establishment of the gut microbiota. First contact with these microbes within the infant gastrointestinal tract signifies the start of a critical mutualistic relationship, which is central for short- and longer-term health. Recent research has provided insights into the origin of these microbial pioneers, how they are maintained within the gut environment, and how factors such as antibiotics or preterm birth may disrupt the succession of beneficial microbes. The acquisition, colonisation, and maintenance of the early life microbiota, and subsequent interactions with the host is a rapidly developing research area. In this review we explore some of these key topics which have been illuminated by recent research, and we highlight some of the important unresolved questions which currently limit our overall understanding of the neonatal gut microbiome

    Bifidobacterium breve UCC2003 Exopolysaccharide Modulates the Early Life Microbiota by Acting as a Potential Dietary Substrate

    Get PDF
    Background: Bifidobacterium represents an important early life microbiota member. Specific bifidobacterial components, exopolysaccharides (EPS), positively modulate host responses, with purified EPS also suggested to impact microbe–microbe interactions by acting as a nutrient substrate. Thus, we determined the longitudinal effects of bifidobacterial EPS on microbial communities and metabolite profiles using an infant model colon system. Methods: Differential gene expression and growth characteristics were determined for each strain; Bifidobacterium breve UCC2003 and corresponding isogenic EPS-deletion mutant (B. breve UCC2003del). Model colon vessels were inoculated with B. breve and microbiome dynamics monitored using 16S rRNA sequencing and metabolomics (NMR). Results: Transcriptomics of EPS mutant vs. B. breve UCC2003 highlighted discrete differential gene expression (e.g., eps biosynthetic cluster), though overall growth dynamics between strains were unaffected. The EPS-positive vessel had significant shifts in microbiome and metabolite profiles until study end (405 h); with increases of Tyzzerella and Faecalibacterium, and short-chain fatty acids, with further correlations between taxa and metabolites which were not observed within the EPS-negative vessel. Conclusions: These data indicate that B. breve UCC2003 EPS is potentially metabolized by infant microbiota members, leading to differential microbial metabolism and altered metabolite by-products. Overall, these findings may allow development of EPS-specific strategies to promote infant health

    Probing Genomic Aspects of the Multi-Host Pathogen Clostridium perfringens Reveals Significant Pangenome Diversity, and a Diverse Array of Virulence Factors

    Get PDF
    Clostridium perfringens is an important cause of animal and human infections, however information about the genetic makeup of this pathogenic bacterium is currently limited. In this study, we sought to understand and characterise the genomic variation, pangenomic diversity, and key virulence traits of 56 C. perfringens strains which included 51 public, and 5 newly sequenced and annotated genomes using Whole Genome Sequencing. Our investigation revealed that C. perfringens has an “open” pangenome comprising 11667 genes and 12.6% of core genes, identified as the most divergent single-species Gram-positive bacterial pangenome currently reported. Our computational analyses also defined C. perfringens phylogeny (16S rRNA gene) in relation to some 25 Clostridium species, with C. baratii and C. sardiniense determined to be the closest relatives. Profiling virulence-associated factors confirmed presence of well-characterised C. perfringens-associated exotoxins genes including α-toxin (plc), enterotoxin (cpe), and Perfringolysin O (pfo or pfoA), although interestingly there did not appear to be a close correlation with encoded toxin type and disease phenotype. Furthermore, genomic analysis indicated significant horizontal gene transfer events as defined by presence of prophage genomes, and notably absence of CRISPR defence systems in >70% (40/56) of the strains. In relation to antimicrobial resistance mechanisms, tetracycline resistance genes (tet) and anti-defensins genes (mprF) were consistently detected in silico (tet: 75%; mprF: 100%). However, pre-antibiotic era strain genomes did not encode for tet, thus implying antimicrobial selective pressures in C. perfringens evolutionary history over the past 80 years. This study provides new genomic understanding of this genetically divergent multi-host bacterium, and further expands our knowledge on this medically and veterinary important pathogen

    Improving causality in microbiome research: Can human genetic epidemiology help?

    Get PDF
    Evidence supports associations between human gut microbiome variation and multiple health outcomes and diseases. Despite compelling results from in vivo and in vitro models, few findings have been translated into an understanding of modifiable causal relationships. Furthermore, epidemiological studies have been unconvincing in their ability to offer causal evidence due to their observational nature, where confounding by lifestyle and behavioural factors, reverse causation and bias are important limitations. Whilst randomized controlled trials have made steps towards understanding the causal role played by the gut microbiome in disease, they are expensive and time-consuming. This evidence that has not been translated between model systems impedes opportunities for harnessing the gut microbiome for improving population health. Therefore, there is a need for alternative approaches to interrogate causality in the context of gut microbiome research. The integration of human genetics within population health sciences have proved successful in facilitating improved causal inference (e.g., with Mendelian randomization [MR] studies) and characterising inherited disease susceptibility. MR is an established method that employs human genetic variation as natural “proxies” for clinically relevant (and ideally modifiable) traits to improve causality in observational associations between those traits and health outcomes. Here, we focus and discuss the utility of MR within the context of human gut microbiome research, review studies that have used this method and consider the strengths, limitations and challenges facing this research. Specifically, we highlight the requirements for careful examination and interpretation of derived causal estimates and host (i.e., human) genetic effects themselves, triangulation across multiple study designs and inter-disciplinary collaborations. Meeting these requirements will help support or challenge causality of the role played by the gut microbiome on human health to develop new, targeted therapies to alleviate disease symptoms to ultimately improve lives and promote good health

    The role of human milk fats in shaping neonatal development and the early life gut microbiota

    Get PDF
    Human breast milk (HBM) is the main source of nutrition for neonates across the critical early-life developmental period. The highest demand for energy is due to rapid neurophysiological expansion post-delivery, which is largely met by human milk lipids (HMLs). These HMLs also play a prebiotic role and potentially promote the growth of certain commensal bacteria, which, via HML digestion, supports the additional transfer of energy to the infant. In tandem, HMLs can also exert bactericidal effects against a variety of opportunistic pathogens, which contributes to overall colonisation resistance. Such interactions are pivotal for sustaining homeostatic relationships between microorganisms and their hosts. However, the underlying molecular mechanisms governing these interactions remain poorly understood. This review will explore the current research landscape with respect to HMLs, including compositional considerations and impact on the early life gut microbiota. Recent papers in this field will also be discussed, including a final perspective on current knowledge gaps and potential next research steps for these important but understudied breast milk components

    Exploring the role of the microbiota member Bifidobacterium in modulating immune-linked diseases

    Get PDF
    The gut-associated microbiota is essential for multiple physiological processes, including immune development. Acquisition of our initial pioneer microbial communities, including the dominant early life genus Bifidobacterium, occurs at a critical period of immune maturation and programming. Bifidobacteria are resident microbiota members throughout our lifetime and have been shown to modulate specific immune cells and pathways. Notably, reductions in this genus have been associated with several diseases, including inflammatory bowel disease. In this review, we provide an overview of bifidobacteria profiles throughout life and how different strains of bifidobacteria have been implicated in immune modulation in disease states. The focus will be examining preclinical models and outcomes from clinical trials on immune-linked chronic conditions. Finally, we highlight some of the important unresolved questions in relation to Bifidobacterium-mediated immune modulation and implications for future directions, trials, and development of new therapies

    Draft genome sequence of Raoultella ornithinolytica P079F W, isolated from the feces of a preterm infant

    Get PDF
    Here, we describe the draft genome sequence of Raoultella ornithinolytica P079F W, isolated from the feces of an infant residing in a neonatal intensive care unit during an ongoing study to characterize the neonate gut microbiota. P079F W will be used in studies investigating the role of the microbiome in neonatal infections
    • 

    corecore