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Abstract
Evidence supports associations between human gut microbiome variation
and multiple health outcomes and diseases. Despite compelling results
from   and   models, few findings have been translated into anin vivo in vitro
understanding of modifiable causal relationships. Furthermore,
epidemiological studies have been unconvincing in their ability to offer
causal evidence due to their observational nature, where confounding by
lifestyle and behavioural factors, reverse causation and bias are important
limitations. Whilst randomized controlled trials have made steps towards
understanding the causal role played by the gut microbiome in disease,
they are expensive and time-consuming. This evidence that has not been
translated between model systems impedes opportunities for harnessing
the gut microbiome for improving population health. Therefore, there is a
need for alternative approaches to interrogate causality in the context of gut
microbiome research.

The integration of human genetics within population health sciences have
proved successful in facilitating improved causal inference (e.g., with
Mendelian randomization [MR] studies) and characterising inherited
disease susceptibility. MR is an established method that employs human
genetic variation as natural “proxies” for clinically relevant (and ideally
modifiable) traits to improve causality in observational associations
between those traits and health outcomes. Here, we focus and discuss the
utility of MR within the context of human gut microbiome research, review
studies that have used this method and consider the strengths, limitations
and challenges facing this research. Specifically, we highlight the
requirements for careful examination and interpretation of derived causal
estimates and host (i.e., human) genetic effects themselves, triangulation
across multiple study designs and inter-disciplinary collaborations. Meeting
these requirements will help support or challenge causality of the role
played by the gut microbiome on human health to develop new, targeted
therapies to alleviate disease symptoms to ultimately improve lives and
promote good health.
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List of abbreviations
AUC = area under the curve; BMI = body mass index;  
CAD = coronary artery disease; CKD = chronic kidney disease; 
FGFP = Flemish Gut Flora Project; GECCO = Genetics and  
Epidemiology of Colorectal Cancer Consortium; GWAS = genome-
wide association study; IBD = inflammatory bowel disease;  
LD = linkage disequilibrium; MI = myocardial infarction;  
MR = Mendelian randomization; OR = odds ratio; RCT = rand-
omized controlled trial; RR = risk ratio; SCFA = short chain fatty 
acid; SD = standard deviation; SNP = single nucleotide polymor-
phism; TMAO = trimethylamine-N-oxide; T2D = type 2 diabetes

Introduction
Evidence from microbiome-wide studies has highlighted rela-
tionships between the gut microbiome and many complex traits 
and diseases – from dietary composition, obesity, rheuma-
toid arthritis and type 2 diabetes (T2D) to Alzheimer’s disease,  
Parkinson’s disease and depression1–9. For example, the lower 
diversity and relative abundances of bacteria within the Bacter-
oidetes vs. Firmicutes phyla in obese vs. lean individuals has 
been observed in studies of mice and humans, with cross- 
sectional, longitudinal and experimental designs10,11. Several stud-
ies have also demonstrated that the relative bacterial abundances  
in the Bacteroidetes order increases and Firmicutes order 
decreases with low-calorie diets (e.g., through fat or carbohydrate  
restriction) or surgery-induced weight loss in obese individu-
als, whereby the gut microbiota composition becomes similar  
to that of their lean counterparts10–13. Ostensibly, these stud-
ies suggest that the manipulation of the human gut microbiome  
(e.g., not only through diet and surgery but also via the intake 
of pre- or pro-biotics, antibiotic usage or faecal microbiome 
transplants) may have potential as an approach to develop new,  
targeted therapies and treatments to reduce disease in the  
population.

However, the design of human studies has been largely obser-
vational (with additional potential for experimental biases in 
sample collection, storage and analysis) and, owing to this, 
there are the many inconsistences within the literature, casting  
doubt on the reliability of existing findings. Moreover, causality  
in these relationships is often difficult to ascertain, with a  
concerning lack of robust evidence able to discern correlation 
from causation (despite being called for 14–16). It is particularly  
alarming that, despite this lack of evidence, and with much  
scepticism17, there is a growing market for commercial initia-
tives targeting the microbiome as a consumer-driven intervention  
(e.g., ubiome, Viome, BIOHM and Atlas BioMed), where 
companies ask for, obtain and sequence faecal samples from  
consumers and prescribe “personalised” nutritional information  
based on the, often, only sample. Furthermore, there has  
been an increase in clinical recommendation of pro-biotics –  
“live microorganisms that, when administered in adequate 
amounts, confer a health benefit on the host”18 – for treating various  
diseases or following antibiotic prescription19–21.

Some of the current literature comprising in vivo and in vitro  
experiments has provided promising results, which have been 
supported by small-scale observational studies within humans.  

However, many studies have failed to be translated between 
model organisms, and studies within humans have been  
unconvincing in their ability to provide evidence for causality 
in these relationships (even those with compelling results from  
in vivo and in vitro models). Despite the few examples that have 
proved successful in their consistency between model organisms 
and their clinical application in humans (e.g., faecal microbi-
ome transplantation in cases of recurrent Clostridioides difficile  
infection, which has a global success rate of over 80%22),  
evidence that has not been translated between model organ-
isms impedes any opportunity for harnessing the gut microbiome  
for reducing the burden of disease in the population and has  
induced scepticism in its causal relevance in human health23,24.

Reasons for these discrepancies between and within model 
organisms include the challenges in the increasing volume of  
high-dimensional multi-omic data produced and, specifically, 
how these are integrated using complex bioinformatics and  
incorporated into traditional study designs, alongside the sensitive  
experimental models that aim to replicate disease traits in 
humans. Whilst murine models have played a key role in the  
emerging gut microbiota research field (given the inability to 
research all questions within humans), there are important inter-
study variations due to experimental design (e.g., sample collection 
and processing), environmental conditions (i.e., differential micro-
biome composition between rodent housing facilities), genetic 
differences and chosen analyses25. Despite some compelling  
examples exhibiting consistency and providing mechanistic  
understanding of these relationships within humans and ani-
mals (e.g., in malnutrition and obesity26,27) and between in silico  
and in vitro models28, it is still debatable as to whether animal 
models of the human gut microbiome (and methods used such  
as germ-free or gnotobiotic mice) are translatable to humans,  
particularly with all scientific questions25,29.

In addition to the limitations of in vitro and in vivo  
experimental design – currently fuelling the “bottom-up” 
approach for assessing causality between model systems – there 
are limitations of the observational human epidemiological study  
designs. Single-sample observational epidemiological studies  
(i.e., population samples in cross-section) or case-control stud-
ies suffer confounding by lifestyle and behavioural factors, biases 
(e.g., error in measures of the gut microbiome and non-random  
or unrepresentative selection of participants) within and between 
studies and may not be generalizable. Indeed, whilst both murine 
and human studies have provided support for a relationship  
between the gut microbiome and diseases such as inflamma-
tory bowel diseases (IBDs) and T2D10,30, these study designs  
usually include the assessment of differential gut microbiome 
compositions within clinical patients (i.e., those who already have 
the disease of interest) compared to controls. Meta-analyses of  
studies like these can provide some insight into consistency and 
robustness of potential findings, which may lead to greater preci-
sion of observed associations (e.g., with metagenomic signatures 
within colorectal cancer cases31,32), but the direction of causality  
in these relationships is ambiguous. Specifically, is it that dif-
ferences in the gut microbiome protect/exacerbate a disease or  
is it the disease state itself that is leading to variation in the gut 
microbiome composition?
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Given that the gut microbiome is a dynamic system, assess-
ment of the prospective changes in this system alongside the 
development of disease and variation in health outcomes is  
required. Longitudinal cohort studies have developed some under-
standing in the transitional association of the gut microbiome 
and specific health outcomes over a relatively short period of  
time (e.g., with childhood obesity, type 1 diabetes and adult weight 
gain33–36). However, these are still limited by traditional obser-
vational epidemiological complications (i.e., confounding and  
bias) if not designed or conducted well and, usually, by statistical 
power given usually small sample sizes.

Randomized controlled trials (RCTs) in this area have made 
some steps towards understanding the causal role played by 
the gut microbiome in disease. However, many mainly focus on 
alleviating symptoms within patients who have an established  
condition37–39. RCTs have focused on the influence of diet, 
pre- and pro-biotics, or antibiotics on the gut microbiome and 
related traits and have presented an array of conclusions ranging  
from a preventative to detrimental role of these interventions.  
However, most of these RCTs consist of fewer than 50 par-
ticipants, who tend to be selected based on disease status and 
who are often on different medications, which are difficult to  
control40. Only a handful of registered trials to date have  
completed with tangible results and more have been terminated, 
suspended or withdrawn40. Given the current literature, trials 

focusing on disease prevention in healthy individuals or those  
understanding how variations within the gut microbiome can 
promote good health are imperative. Whilst larger efforts are  
ongoing (e.g., as of July 2019, there were approximately 650 
RCTs of the gut microbiome still recruiting), such trials are likely  
not feasible to answer every scientific question and are impor-
tantly expensive, time-consuming and sometimes unethical, par-
ticularly within a healthy human population. The application of  
alternative causal inference methods in this context are needed 
to improve causal inference and help elucidate the role played  
by the gut microbiome in human health and disease.

MR
MR is an approach that uses human genetic variation (usually 
single nucleotide polymorphisms [SNPs], identified in genome-
wide association studies [GWAS]) to act as a “proxy” measure for  
exposures of interest (e.g., here, the gut microbiome)41–43 Pro-
vided a number of key assumptions are met (Figure 1), these  
genetic variants can be argued to have properties that approxi-
mate those of “instruments” and thus can be used to estimate  
the causal effect of a trait on disease or health outcome44. Theo-
retically analogous to arms of an RCT, genetic variants used in 
MR are largely independent of confounding factors, due to the  
random nature of their allocation within a population in the 
absence of any population stratification. These genetic variants 
are also not modified by the later development of disease or health  

Figure 1. Framework, assumptions and example of Mendelian randomization (MR) in the context of gut microbiome research. (A) MR 
relies on the following three core assumptions: (1) the genetic variant(s) being used as an instrument (Z) is associated with the exposure (X); 
(2) the genetic variant(s) are independent of measured and unmeasured confounders (U) of the association between the exposure (X) and 
outcome (Y); and (3) there is no independent pathway between the genetic variant(s) and outcome (Y) other than through the exposure (X) 
– known as horizontal pleiotropy or the exclusion restriction criteria. (B) Example of MR applied to understanding the causal role played by 
Bifidobacterium and obesity using the rs4988235 SNP (i.e., the lactase persistence genetic variant within the MCM6 locus) as an instrument 
(see text for discussion).
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outcome and, with very accurate genotyping being common-
place, measurement error is largely reduced. Therefore, at a  
population level, the portion of variance in the modifiable trait 
explained by human genetic variants (unlike the direct meas-
urement of the trait itself) can be used to model situations that  
are free of the aforementioned limitations that would otherwise 
weaken causal inference in observational studies.

MR expands upon traditional genetic analyses (such as candi-
date gene studies, GWAS or aggregating genome-wide vari-
ation to inform characterisation of disease susceptibility) by 
harnessing randomly allocated genetic variation identified as 
being associated with variation in a particular trait to specifically  
interrogate the causal implications of that trait on a disease  
or health outcome, in a manner comparable to RCTs. Such anal-
yses can be done at a fraction of the time and cost required for 
a large-scale RCT and can be used to ask many of the scientific  
questions that may not be feasible or ethical with RCTs41,42.  
Particularly demonstrative of the advantages of the MR paradigm  
is the example of selenium and prostate cancer (Box 1).

Box 1. Illustration of Mendelian randomization in 
conjunction with randomized controlled trials – the 
SELECT trial

Since the early 2000s, many observational studies have 
implicated the protective role of selenium supplementation 
or intake (usually determined by measured toenail selenium 
levels) on both overall and advanced prostate cancer risk45,46. 
These findings motivated the initiation of the prospective, 
double-blinded Selenium and Vitamin E Cancer Prevention Trial 
(SELECT)47, which randomized the supplementation of selenium, 
along with other antioxidants, by oral dose to understand 
its possible causal role on prostate cancer. Despite initial 
compelling results from observational studies, and after costing 
$114 million to initiate and conduct, SELECT was terminated 
prematurely (after 7 years, as opposed to the 12 planned years), 
as the initial trial results implicated little evidence supporting a 
protective role of higher selenium levels on the risk of prostate 
cancer (hazard ratio (HR): 1.09; 99% confidence interval 
(CI): 0.93-1.27). There was also some evidence to support a 
detrimental role of selenium on advance prostate cancer (HR: 
1.21; 99% CI: 0.90-1.63) and a potentially off-target, detrimental 
effect of selenium supplementation on T2D within 5 years of the 
trial (relative risk (RR): 1.07; 99% CI: 0.94-1.22). More recently, 
complementary MR analyses using 11 SNPs as instruments 
for circulating selenium levels similarly provided little evidence 
of a protective role on prostate cancer risk (odds ratio (OR): 
1.01; 95% CI: 0.89-1.13) and some evidence supporting the 
detrimental impact on the risk of advanced prostate cancer (OR: 
1.21; 95% CI: 0.98-1.49) and T2D (OR: 1.18; 95% CI: 0.97-1.43), 
consistent with the trial but in a fraction of the time and with 
effectively no cost48.

Given the inconsistencies between studies aimed at estimat-
ing the causal role of the gut microbiome in human health and  
disease, MR provides the opportunity to assess causality in 
observed associations not only between the gut microbiome and 
health outcomes but also the impact of various traits on the gut  
microbiome itself, without the need for costly RCTs or lab-based 

study designs in the first instance. Results derived from the appli-
cation of MR in this context also provides a potential mecha-
nism to direct the prioritisation of characteristics of the gut  
microbiome as interventional targets (e.g., via dietary regula-
tion or using pre- and pro-biotics), to inform clinical and public  
health guidelines and to improve population health in an  
efficient and cost-effective manner. For a full description and 
definitions of terminology, methods and assumptions specific to  
MR, please see the online MR Dictionary43.

Current applications of MR
Our understanding of the host (i.e., human) genetic contribu-
tion to the gut microbiome has primarily arisen from candidate 
gene studies and genome-wide screens in model organisms49.  
In recent years, and with the advent of higher-throughput tech-
nologies that are able to capture measurements of the gut micro-
biome at scale, several GWASs in humans have been conducted 
to further uncover host genetic variation that shapes the gut  
microbiome50–57. Together, these initial GWASs have identified 
associations between more than 100 human genetic variants associ-
ated with constituents of the gut microbiome (e.g., microbial diver-
sity, taxon abundance and community structure). However, there 
has been limited overlap of identified host genetic variants impli-
cated as being associated with the gut microbiome across studies.  
With the existence of host genetic variants associated with the 
gut microbiome, we and others have applied MR to appraise  
causality in the relationships between the gut microbiome and 
human health58–61. However, it is of upmost importance for  
careful examination and interpretation of MR-derived causal 
estimates, host genetic effects and the assessment of other  
benefits that the integration of human genetics to this field may 
provide in appraising causality. The current applications of  
MR in microbiome research are described below, with pertinent 
limitations shared between these applications discussed.

Microbiota genera and ischemic heart disease, T2D and 
risk factors
In 2018, Yang et al. used MR to assess the causal effect of  
27 component genera of the gut microbiome on ischemic heart 
disease, T2D, adiposity, lipid levels and insulin resistance using  
human genetic variation that had previously been associated 
with these particular bacterial taxa measured with 16S rRNA  
sequencing58. In this case, host SNPs (i.e., human genetic varia-
tion) associated with these 27 genera were obtained from previous  
studies51–53,55,57, with highly correlated SNPs removed based on 
linkage disequilibrium (LD; based on an r2 ≥ 0.8). These were 
also crossed-referenced with Ensembl and the GWAS catalog to 
remove potentially pleiotropic SNPs (i.e., those that may have  
an effect on the outcome other than through the exposure of 
interest) and to reduce possibility of invalidating the third MR  
assumption (Figure 1).

By using MR to analyse the causal impact of these 27 gen-
era on cardiometabolic disease and related traits, authors found 
evidence that a greater relative abundance of bacteria in the  
Bifidobacterium genus was associated with a 1.5% lower  
odds of ischemic heart disease (odds ratio [OR]: 0.99; 95%  
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CI: 0.97-1.00), a 0.01 standard deviation (SD) lower body 
mass index (BMI; 95% CI: 0.01-0.02) and a 0.03 SD lower  
level of lipoprotein cholesterol (95% CI: 0.02-0.03).

This application of MR provides compelling evidence of the 
causal impact of the gut microbiome on cardiometabolic traits. 
However, these results were not robust when testing whether the  
effects of these genetic variants were independent of Bifidobac-
terium (i.e., “horizontal pleiotropy” – Figure 1), suggesting that 
this bacterial genus may not have been the sole driver of these  
seemingly beneficial metabolic effects. Additionally, many of 
the associations between the human genetic variants and the 
gut microbiome used in the MR analyses were not replicated  
either within or between the studies from which they were  
obtained51–53,55,57, questioning the validity of using them in 
MR analyses, as they may not be reliably associated with the  
exposure (i.e., invalidating the first MR assumption, Figure 1).

Short-chain fatty acids and metabolic diseases
In 2019, authors of another study based on a collection of 
952 normoglycemic individuals from the LifeLines-DEEP  
cohort with genetic, metagenomic sequences and faecal short-
chain fatty acid (SCFA) levels performed bi-directional MR to  
assess the association of 245 metagenomic features describing 
functionality of the gut microbiome (2 of which were linked to  
SCFA production, 57 unique taxa and 186 pathways) with 17 
metabolic and anthropometric traits59,62. Genetic variants were  
chosen by conducting a GWAS within 445 individuals from the 
LifeLines-DEEP cohort, where a fairly lenient p-value threshold 
of 1x10-5 was used to define host genetic variants independently 
associated with functional features of the gut microbiome.

Authors found that the microbial functional pathway  
characterised from metagenomic sequencing involved in  
4-aminobutanoate (GABA) degradation (PWY-5022), of which 
the SCFAs butyrate and acetate are products, was associated  
with improved insulin response after an oral glucose- 
tolerance test (characterised by the ratio of the areas under the 
curve (AUC) for measured insulin and glucose levels, AUC

insulin
/ 

AUC
glucose

). Specifically, by using MR to assess the impact of 
functionality of the gut microbiome, authors found that each 
SD increase in the abundance of the PWY-5022 pathway was  
associated with a 0.16 mU/mmol increase in the AUC

insulin
/ 

AUC
glucose

 (95% CI: 0.08-0.24), which was robust to MR 
methods that test validity with regards to horizontal  
pleiotropy. In taxonomic analyses, the bacteria most corre-
lated with the PWY-5022 functional pathway were Eubacterium  
rectale and Roseburia intestinalis (both of the Clostridiales 
order), species known to produce butyrate63. The proposed  
mechanism explaining these results suggested that host 
genetic variation influences the gut microbiome composition 
to modulate GABA degradation, thus, increasing the ability of  
the pancreas to secrete insulin in response to a glucose challenge.

Whilst the metagenomic features authors used provided more 
insight into the functionality of the gut microbiome (over 
and above measuring relative abundances with 16S rRNA  
sequencing), authors were unable to test the relationship between 

these features and circulating levels of the SCFAs (e.g., butyrate 
and propionate), as these were not measured in the study  
sample. Similar to Yang et al., the associations between the 
genetic variants used in MR analyses and the functional fea-
tures of the gut microbiome were not replicated in other studies.  
Additionally, much of the GWAS summary-level data that authors 
used was adjusted for other covariates (mainly BMI), which  
may induce false correlations between the exposure and out-
come via a certain type of selection bias (i.e., collider bias) and,  
in the most extreme cases, this can reverse the direction of the  
causal effect estimate (which was observed in this study)64,65.

Microbiota-derived metabolites and cardiometabolic health
A further study conducted by Jia et al. used MR to examine 
the association between the trimethylamine-N-oxide (TMAO)  
metabolite, produced by processes specific to gut bacteria when 
metabolising choline from high-fat foods such as eggs and 
beef, and its predecessors with both continuous measures of  
cardiometabolic health and diseases60. This study was moti-
vated by the observational epidemiological literature, suggest-
ing that choline, TMAO (a derivative of choline) and carnitine 
are associated with an increased risk of heart disease and other  
cardiometabolic diseases, hypothesised through their athero-
sclerotic effects in blood vessels66,67. The authors undertook  
a bi-directional MR analysis to unpick the direction of asso-
ciation of circulating levels of these metabolites with traits relat-
ing to adiposity, glycaemic profile, lipids and kidney function  
alongside diseases including T2D, coronary artery disease  
(CAD), myocardial infarction (MI), stroke, atrial fibrillation and 
chronic kidney disease (CKD)60. Genetic variants used in MR 
analyses as instruments for each of four metabolites (choline, 
TMAO, carnitine and betaine) were obtained from a GWAS of 217  
blood-based metabolites in 2,076 individuals of European 
descent from the Framingham Heart Study (Offspring Cohort)68  
and chosen based on a lenient threshold of “suggestive” 
genome-wide significance (P<5x10-5). Given the number of tests 
being performed, authors set an a priori Bonferroni-corrected  
threshold (P<0.0005) to detect evidence for association.

By using MR to assess the causal role of gut microbiome-derived 
metabolites and cardiometabolic health, authors found some 
evidence to suggest that higher circulating levels of choline  
increased the risk of T2D (OR: 1.84 per 10 units; 95% CI: 1.00, 
3.42) and higher circulating levels of betaine reduced the risk of 
T2D (OR per 10 units: 0.68; 95% CI: 0.48, 0.95). There was lit-
tle evidence to suggest that any metabolite had a causal role 
on the continuous measures of cardiometabolic health. In the  
reverse direction, there was evidence suggesting that a higher 
liability to T2D may play a causal role in increasing levels of  
TMAO (0.13 units; 95% CI: 0.06, 0.20). Most of these find-
ings were consistent across multiple MR methods, which test  
robustness with regards to horizontal pleiotropy (i.e., the third  
MR assumption, Figure 1).

Results presented by Jia et al. provided further insight into the 
functional relevance of the gut microbiome on cardiometabolic 
disease, performing power calculations and utilising a selec-
tion of appropriate sensitivity analyses that appraise validity of  
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derived causal estimates. These results suggested that, by altering  
levels of these microbiome-dependent metabolites, there may 
be an opportunity to modify the potential causal impact of 
the gut microbiome and its metabolic functionality to reduce 
the risk of T2D. However, it is important to clarify firstly that 
authors tested the relationship of circulating levels of metabo-
lites with cardiometabolic traits and not characteristics of the gut 
microbiome itself. Indeed, whilst constituent gut microbiota do  
produce these metabolites naturally and are associated with their 
circulating levels, such metabolites can be introduced into the 
blood stream via other means (e.g., supplementation and diet). 
Thus, the direct causal impact of gut microbiome in this instance is  
uncertain and may, in fact, be irrelevant. Similar to the other 
applications of MR described above, the genetic variants used 
as instruments for the microbiota-derived metabolites were not  
replicated in the original GWAS from which they were obtained 
and were selected based on a fairly lenient threshold (similar  
to Sanna et al.58), questioning the reliability of their use.

Genome-wide association of gut microbiome variation and 
causal inference analyses
As is evident from the current applications of MR in the con-
text of microbiome research, one of the main limitations is  
the limited overlap and replication of identified host genetic 
variants associated with the gut microbiome across studies. 
Most recently, a GWAS of the gut microbiome characterised 
with 16S rRNA sequencing was conducted by Hughes et al. in  
over 3800 individuals from three independent studies, including  
a discovery sample comprising the Flemish Gut Flora Project 
and two German replication samples61. Within this analysis,  
13 SNPs reached conventional levels of genome-wide  
significance (P<2.5x10-8), with some showing low heterogeneity  
between studies, and two of these reached a strict study-level  
threshold (P<1.57x10-10). This novel and persistent collection of 
SNPs associated with measures of the gut microbiome enabled  
the application of MR to provide further insight into the causal  
link between these microbial features and a set of metabolic,  
inflammatory and neurological traits previously implicated  
as being associated with the gut microbiome throughout the  
literature61.

These results provided evidence for causality between five 
microbial traits and seven outcomes, including evidence for a 
causal role of bacteria within the Butyricicoccus genus on IBDs  
and bacteria within the Firmicutes phylum on waist circum-
ference. The strongest association indicated that presence (vs. 
absence) of bacteria within the Dialister genus decreased the risk 
of Alzheimer’s disease (risk ratio [RR] with a doubling of the  
genetic liability to presence vs. absence of Dialister: 0.81; 95% 
CI: 0.73, 0.90). In the reverse direction, there was also evi-
dence for causal relationships between four phenotypes and  
three microbial traits, including evidence for a causal role of a 
higher liability to Parkinson’s disease, T2D and Crohn’s dis-
ease on bacteria within the Firmicutes phylum. The strongest  
result suggested that individuals with Alzheimer’s disease 
were more likely to carry bacteria in the Dialister genus within  
their gut (RR for a doubling of the genetic liability to  
Alzheimer’s disease: 1.81; 95% CI: 1.13-2.89).

Focusing on the components of this latter result, the bi- 
directional analyses of the causal relationship between bac-
teria within the Dialister genus and Alzheimer’s disease may  
seemingly be somewhat contradictory (i.e., presence of Dialister 
reducing the risk of Alzheimer’s disease but Alzheimer’s disease 
presence increasing likelihood of Dialister). However, there are 
two important points to note. Firstly, there may well be a true pro-
tective role of the Dialister bacteria on the onset of Alzheimer’s  
disease (hence the inverse effect), which is supported by a  
recent study proposing this very notion69. Secondly, the single 
genetic variant used as an instrument in the MR analysis assessing  
the impact of Dialister bacteria on Alzheimer’s disease is 
within SORL1, a gene characterised as being associated with  
Alzheimer’s disease itself70. Therefore, the question arises as 
to whether the SNP is indeed a valid instrument for bacte-
ria within the Dialister genus (as it may be a pleiotropic SNP,  
independently associated with Alzheimer’s disease) or whether 
the mechanism by which the SNP influences Alzheimer’s  
disease is through its impact on bacteria within the Dialister 
genus. At the present time, is difficult to discern without further  
biological, functional and mechanistic knowledge. Therefore, 
there is a requirement for careful examination and interpretation  
of the host (i.e., human) genetic effects on these microbial  
traits before using them in such applied analyses.

One proposed mechanism for examining these complexities 
and unpicking the link between the human gut microbiome 
and various health outcomes is utilizing the plethora of human  
genetic epidemiological methods and sensitivity analyses that 
specifically explore the validity of host genetic variation in 
MR analyses. For example, as proposed by Richardson et al.71,  
methods such as colocalization, bivariate genetic fine mapping 
and bi-directional MR may provide some distinction between  
reverse causality and either direct or LD-induced horizontal  
pleiotropy (Figure 2).

Indeed, the application of such methods in a recent study pro-
vided some insight into the validity of using host genetic vari-
ants associated with the human gut microbiome in examining the 
relationship between gut microbiome variation and colorectal  
cancer (unpublished). For this, the summary statistics from 
the 13 SNPs associated with microbial traits derived from 16S  
rRNA sequencing reported by Hughes et al. were combined 
with those from the Genetics and Epidemiology of Colorectal  
Cancer Consortium (GECCO) in a two-sample MR analysis61.  
Results provided evidence that the presence (vs. absence) of  
uncharacterised bacterial genera within the Bacteroidales order 
increased the risk of colorectal cancer by approximately 8%  
(95% CI: 2-15%), with no strong evidence that the SNP used  
as an instrument was associated with other traits or the outcome 
itself, reducing the likelihood of horizontal pleiotropy.

Whilst these are first steps in the right direction of under-
standing the utility of host genetic variation in microbiome  
research for improved causality, there is much room for improve-
ment. Importantly, when appreciating the complexity of these 
relationships, the integration of human genetics, genetic epi-
demiological techniques and causal inference methodologies  
to the field of microbiome research holds great potential.
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Figure 2. Mechanisms explaining observed associations between genetic variants and the gut microbiome (adapted from Richardson 
et al.)71 testing the association between the gut microbiome and an example health outcome. (A) The genetic variant has an effect on 
the health outcome, mediated through the microbiome (as in Figure 1) – i.e., the relationship of interest; (B) the genetic variant has an effect 
on health outcome through other biological mechanisms, which in turn has a downstream effect on the microbiome (i.e., reverse causation); 
(C) the genetic variant that influences the microbiome is correlated with another genetic variant (i.e., they are in linkage disequilibrium) 
that influences the health outcome; (D) the genetic variant influences both the microbiome and a health outcome through two independent 
biological pathways (i.e., horizontal pleiotropy).

Limitations of the MR approach
With the advent of the application of MR within the context of 
gut microbiome research, and the growing data available for 
such analyses, there are important limitations and complexi-
ties to these applied epidemiological analyses that need to be 
acknowledged and addressed. The general limitations of MR 
have been summarised before41,43, but those most pertinent to 
microbiome research are currently the lack of robust and reli-
able genetic variants associated with the gut microbiome and its  
functionality and the complexity of mechanisms by which host 
genetic variants impact these microbial traits. This latter com-
plication includes the possibility that identified genetic vari-
ants associated with components of the microbiome are also 
associated with the outcome of interest in an MR study through  
independent mechanisms (Figure 2). In addition, many of the  
current studies utilizing MR have used lenient p-value thresholds 
to define the set of included genetic variants, leading to concerns 
in their instrumental variable quality.

As the pool of increasingly larger-scale GWASs and  
meta-analyses grow (e.g., most imminently with the MiBioGen  
initiative72), the number of genetic variants associated with 
the various characterisations of the microbiome (i.e., bacteria- 
specific metabolites, bacterial taxa or functional features) will 
also likely grow. However, it seems clear that the environmen-
tal contribution to the gut microbiome will be much greater than 
the host genetic contribution8. At the very least, this calls for  

greater sample sizes in individual cohort studies and consortia for 
adequate statistical power within MR analyses testing the causal 
role of these environmental cues on gut microbiome variation (or, 
indeed, the role of the gut microbiome on disease). Furthermore,  
it is important to note that the mechanisms by which these  
genetic variants are associated with the gut microbiome need 
to be carefully considered and will rely on comprehensive func-
tional and biological experiments and knowledge from both animal  
and human models that will only be possible with inter- 
disciplinary collaboration.

Understanding the complex mechanisms that link genetic vari-
ation with the gut microbiome will be particularly important 
when interpreting results obtained from MR analyses (Figure 2).  
As an example of this, in the GWAS conducted by Hughes  
et al.61, bacteria in the Bifidobacterium genus was associated 
with the well-characterized rs4988235 lactase persistence variant 
at the MCM6 locus, which is common in European populations 
and the only persistent signal among existing microbiome-wide  
GWASs. Each additional copy of the lactase persistent allele 
decreases the relative bacterial abundance of Bifidobacte-
rium, where individuals predisposed to be lactose tolerant  
are likely to have a reduced average Bifidobacterium bacterial 
abundance within their gut. This observation is supported bio-
logically as species and strains of Bifidobacterium can metabo-
lise lactose (preferentially over other simple sugars), where  
individuals who are lactose intolerant have higher levels of  
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Bifidobacterium to aid digestion, and where supplementation of 
Bifidobacterium has been shown to reduce lactose intolerance  
in humans73,74. In this study, by using the rs4988235 variant  
as an instrument in MR analyses to interrogate the causal 
role of bacteria in the Bifidobacterium genus in the aetiology  
of the collection of metabolic, inflammatory and neurological  
traits, there was suggestive evidence of causal effects 
with adiposity-related traits. Specifically, a greater rela-
tive bacterial abundance of Bifidobacterium had a potentially  
causal role in lowering waist circumference, BMI and waist-
hip ratio (where the association with BMI was consistent  
with that described by Yang et al.58).

However, it is currently difficult to determine whether this rela-
tionship with adiposity-related traits is the direct product of  
variations in the relative abundance of Bifidobacterium (i.e., 
via immune modulation or the production of SCFAs, for  
example75,76) or the direct impact of rs4988235 variation on adi-
posity via other exposures such as dietary composition (e.g., 
milk intake), independently of Bifidobacterium (i.e., horizon-
tal pleiotropy – Figure 2D). Therefore, whilst there may appear 
to be a causal effect of Bifidobacterium on adiposity measures, 
this observation may be an artefact resulting in the independent  
impact of the rs4988235 on both Bifidobacterium and adipos-
ity, which is difficult to discern without further functional  
knowledge of the host genetic variants being used as instru-
ments for the gut microbiome in MR analyses. This ambiguity  
is particularly pertinent at a time where there are few genetic 
variants reliably associated with characteristics of the gut  
microbiome.

In addition to these MR-specific limitations, it is worth revisit-
ing the general limitations with microbiome research that have  
likely driven the limited overlap of genetic variants consist-
ently associated with gut microbiota between microbiome-wide  
GWASs. These include (but are certainly not limited to) dif-
ferences in protocols/standards for sample collection and stor-
age, DNA extraction method (including chosen hypervariable  
region for PCR and sequencing methods77), PCR primers, and 
amplicon vs. shotgun sequencing78,79. Whilst 16S rRNA ampli-
con sequencing is useful in providing insight into the types  
of bacteria present within samples, one particular issue in cur-
rent studies is the limited resolution afforded by this technol-
ogy. However, as studies using 16S sequencing combine for  
undertaking harmonized GWASs (e.g., with the MiBioGen ini-
tiative), the power afforded by larger sample sizes will be invalu-
able for understanding the host genetic contribution to the gut  
microbiome. This, in combination with future studies using 
data from complementary technologies (e.g., shotgun metage-
nomics achieving strain-level resolution, metatranscriptomics,  

proteomics and metabolomics) able to provide more refined  
measures of components and functionality of the gut microbi-
ome, will enable a more comprehensive understanding of the role  
played by these microorganisms in health and disease and the 
mechanisms by which these occur. In addition, whilst most  
studies have focused on the bacterial component of the gut  
microbiome, it is important to interrogate the causal role that  
other integral microorganisms (i.e., fungi, viruses and archaea)  
play in the development and progression of host disease and  
health outcomes over the lifecourse.

Conclusions
MR is an established approach that uses human genetic  
variation to estimate causal associations in observational  
epidemiological relationships and can be used to provide fur-
ther insight into the causal relevance of the gut microbiome 
in human health and disease. The applications discussed here 
currently flag the potential of MR analyses following the  
growing collection of genetic association data for the human 
microbiome, but there are also important issues likely to arise with 
a naïve application of complex GWAS results to understanding  
causes of health outcomes without an in-depth understanding 
of the host genetic variants themselves and the application and 
pitfalls of MR methodology41,80. Whilst MR was motivated to  
confer certain advantages over traditional epidemiological 
study designs, like any study design within epidemiology, it is  
not exclusively adequate to conclusively demonstrate causal-
ity. Therefore, there is a continued need for triangulation across 
multiple traditional epidemiological approaches and inter- 
disciplinary collaboration to support or challenge causality of 
the role played by the gut microbiome on human health and to 
understand the mechanisms by which these relationships occur. 
Such partnerships are necessary to maximise translation into the  
development of new, targeted therapies to alleviate disease 
symptoms to ultimately improve lives, and promote good health  
whilst preventing ill health81.
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1. Introduction. When discussing the potential role of microbiome modulation as therapy, I
think it is important to notice that despite causality can be proved (either by MR or
mechanistic studies in mice/humans), we have to 1) remember that gut microbiome is an
ecosystem and thus we need to also investigate carefully the side effects of any type
intervention intended to module one specific bacteria and 2) remember that evidence for
causal relationship with a disease doesn’t necessarily mean that the scenario is
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intervention intended to module one specific bacteria and 2) remember that evidence for
causal relationship with a disease doesn’t necessarily mean that the scenario is
reversible, in other words, that modulating that specific bacteria/function will not
necessarily cure the disease (while remains a valuable information in terms of
prevention).

The Reviewer makes an excellent point regarding the complexity of the gut microbiome and the
implication of this complexity within possible therapies and interventions. We have added a
sentence to the introduction to incorporate this point, as follows:
 
“However, with the development of such efforts, it is important to recognise that the gut microbiome
is a dynamic and complex ecosystem; therefore, careful investigation of the off-target effects of any
treatment or intervention intended to alter one or a small number of specific bacteria is required.”
 
Additionally, the Reviewer’s point regarding implications of findings to disease prognosis is
valuable and, indeed, an important consideration when interpreting findings from all
epidemiological studies focusing on disease risk in comparison to disease prognosis. We totally
agree that, even if evidence points to a causal impact of the gut microbiome on the risk of a
disease, this certainly does not imply that the same is true for the progression of that disease (i.e.,
treating individuals who suffer from a disease with, say, a pre-/pro-biotic that promotes/contains
bacteria associated with the risk of that disease may not lead to a better prognosis – or, as the
Reviewer states, cure that disease). This is an important distinction to make and is only resolved
by specifically assessing the association between the gut microbiome and disease progression,
prognosis or survival (rather than disease risk). As it stands, the application of Mendelian
randomization to the study of disease progression is in its infancy, with methods being developed
to address the additional caveats of studying populations selected on case-only status, as outlined
by   (e.g., that proposed by   and the Slope-Hunter methodPaternoster et al. Dudbridge et al.
proposed by  ). To address this comment, we have stated the following toMahmoud et al.
emphasize this point.
 
“Furthermore, if evidence of a likely causal effect of a component of the gut microbiome on the risk
of a disease is provided, this does not imply that the same is true for the progression of that
disease (and vice versa). Specifically, treating individuals who suffer from, say, IBD with a
pre-/pro-biotic that promotes/contains bacteria found to be associated with the risk of developing
IBD may not lead to better prognosis of IBD after diagnosis.”
 
2. MR paragraph. Please remark that MR can be run using limited time and reduced costs
because it takes advantage of pre-existing large scale genetic studies (otherwise the cost

 and time are not that limited, even if still less than many RCT).

We have edited a sentence in the MR paragraph to clarify this point:
 
“Such analyses can be done at a fraction of the time and cost required for a large-scale RCT, by
exploiting data from pre-existing and large-scale genetic studies, and can be used to ask many of
the scientific questions that may not be feasible or ethical with RCTs[45, 46].”
 
3. MR paragraph – limitations. Please add a note that MR is a great source but only
applicable to those bacteria that are modulated by genetic of the host – only a small
fraction of bacteria are, so alternative approaches to detect causality are still much

 needed. 
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We have added the following sentence to the appropriate section:
 
“Furthermore, the application of MR will only be relevant to the components of the gut microbiome
that are detectibly heritable and, where this is not the case, alternative approaches to interrogate
causality in relationships between the gut microbiome and health traits will be required.”
 
4. Page 6, please amend the details of the study by Sanna et al. (2019). In this study, the
number of individuals used to carry out the GWAS was 952. An additional independent
cohort of 445 individuals was used to derive the optimal threshold for selecting the
instruments; specifically this was chosen as the threshold that selected the set of
independent variants that, when used in a polygenic risk score in the independent cohort,
explained the most of the variance of the same microbiome feature. [This point explains
my answer “partly” to the question “Are all factual statements correct and adequately

 supported by citations?”]

We thank the Reviewer for clarifying the sample sizes on this discussed paper. We have edited the
referenced sentence as follows in light of this information:
 
“Genetic variants were chosen by conducting a GWAS within 952 individuals from the
LifeLines-DEEP cohort. A fairly lenient p-value threshold of 1x10  (identified from an independent
cohort of 445 individuals) was used to define host genetic variants independently associated with
functional features of the gut microbiome and explained most variance in the same feature.”
 
5. Page 7 second paragraph. Please add the note that some of the complimentary
approaches to inform MR (for example the bivariate finemapping utilized by Richardson et
al.) – require individual level data of both the exposure and the outcome, and thus are
currently impractical to apply to diseases, as there are not such large scale studies of

 microbiome on case-control studies.

We have added the following sentence to reflect this.
 
“As these methods (particularly colocalization and genetic fine mapping) require individual-level
and genome-wide information on both the exposure and outcome, these methods will become
more feasible with the growing availability of large-scale GWASs of the gut microbiome and other
traits.”
 
6. Page 2, last sentence of the second paragraph. I suggest to add a sentence remarking
that to solve this ambiguity, large studies are extremely needed as they will likely lead to

 multiple associated SNPs, which will help MR to better investigate effect of confounders.

The Reviewer makes an important point and we have added the following sentence to a paragraph
in the limitations section to address this:
 
“A greater number of genetic variants robustly associated with features of the gut microbiome will
further enable the application of the continuously developing plethora of MR methods that require
multiple instruments to investigate the effect of confounding, mediation, pleiotropy and invalidation

 of MR assumptions.”

 N/ACompeting Interests:
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