175 research outputs found
Poisson-Nernst-Planck Systems for Narrow Tubular-like Membrane Channels
We study global dynamics of the Poisson-Nernst-Planck (PNP) system for flows
of two types of ions through a narrow tubular-like membrane channel. As the
radius of the cross-section of the three-dimensional tubular-like membrane
channel approaches zero, a one-dimensional limiting PNP system is derived. This
one-dimensional limiting system differs from previous studied one-dimensional
PNP systems in that it encodes the defining geometry of the three-dimensional
membrane channel. To justify this limiting process, we show that the global
attractors of the three-dimensional PNP systems are upper semi-continuous to
that of the limiting PNP system. We then examine the dynamics of the
one-dimensional limiting PNP system. For large Debye number, the steady-state
of the one-dimensional limiting PNP system is completed analyzed using the
geometric singular perturbation theory. For a special case, an entropy-type
Lyapunov functional is constructed to show the global, asymptotic stability of
the steady-state
Recommended from our members
Collisions of highly charged ions with electrons, atoms and surfaces
At the Oak Ridge Multicharged Ion Source Facility, an experimental atomic collisions physics program is centered around a recently upgraded Electron Cyclotron Resonance (ECR) multicharged ion source. The 10 GHz CAPRICE source has been in operation since October 22, 1992, and has provided more intense, higher charge ion beams than our previous ECR ion source. Intense metallic beams have recently become available with the installation of a metallic oven on the source. In addition to measurements of electron-impact excitation, carried out in collaboration with the Joint Institute for Laboratory Astrophysics (JILA), experiments are presently on-line to study electron-impact ionization, low-energy ion-atom collisions, and ion-surface interactions. A brief summary of our various activities with an emphasis on the new capabilities is presented
Against all odds? Forming the planet of the HD196885 binary
HD196885Ab is the most "extreme" planet-in-a-binary discovered to date, whose
orbit places it at the limit for orbital stability. The presence of a planet in
such a highly perturbed region poses a clear challenge to planet-formation
scenarios. We investigate this issue by focusing on the planet-formation stage
that is arguably the most sensitive to binary perturbations: the mutual
accretion of kilometre-sized planetesimals. To this effect we numerically
estimate the impact velocities amongst a population of circumprimary
planetesimals. We find that most of the circumprimary disc is strongly hostile
to planetesimal accretion, especially the region around 2.6AU (the planet's
location) where binary perturbations induce planetesimal-shattering of
more than 1km/s. Possible solutions to the paradox of having a planet in such
accretion-hostile regions are 1) that initial planetesimals were very big, at
least 250km, 2) that the binary had an initial orbit at least twice the present
one, and was later compacted due to early stellar encounters, 3) that
planetesimals did not grow by mutual impacts but by sweeping of dust (the
"snowball" growth mode identified by Xie et al., 2010b), or 4) that HD196885Ab
was formed not by core-accretion but by the concurent disc instability
mechanism. All of these 4 scenarios remain however highly conjectural.Comment: accepted for publication by Celestial Mechanics and Dynamical
Astronomy (Special issue on EXOPLANETS
National Beef Quality Audit-2016: Transportation, mobility, and harvest-floor assessments of targeted characteristics that affect quality and value of cattle, carcasses, and by-products
The National Beef Quality Audit-2016 (NBQA-2016) was conducted to assess current transportation, mobility, and quality characteristics of U.S. fed steers and heifers. Data were collected at 17 beef processing facilities between March and November 2016. About 8,000 live cattle were evaluated for transportation and mobility, and about 25,000 carcasses were evaluated on the slaughter floor. Cattle were in transit to the slaughter facility for a mean duration of 2.7 h from a mean distance of 218.5 km using trailers with dimensions ranging from 17.84 m2 to 59.09 m2. Area allotted per animal averaged 1.13 m2 and ranged from 0.85 m2 to 2.28 m2. A total of 96.8% of cattle received a mobility score of 1 (walks easily, no apparent lameness). Identification types (35.1% had multiple) were lot visual tags (61.5%), individual tags (55.0%), electronic tags (16.9%), metal-clip tags (9.2%), bar-coded tags (0.05%), wattles (0.01%), and other (2.6%). Cattle were black-hided (57.8%), Holstein (20.4%), red-hided (10.5%), yellow-hided (4.8%), gray-hided (2.9%), brown-hided (1.3%), and white-hided (1.1%). Unbranded hides were observed on 74.3% of cattle; 18.6% had brands located on the butt, 6.3% on the side, and 1.3% on the shoulder (values exceed 100% due to multiple brands). For hide-on carcasses, 37.7% displayed no mud or manure; specific locations for mud or manure were legs (40.8%), belly (33.0%), tail region (15.5%), side (6.8%), and top-line (3.9%). Cattle without horns represented 83.3% of the sample, and cattle that did have horns measured: \u3c 2.54 cm (5.5%), 2.54 to 12.7 cm (8.3%), and \u3e 12.7 cm (2.9%). Carcasses without bruises represented 61.1% of those sampled, whereas 28.2% had 1, 8.2% had 2, 2.1% had 3, and 0.3% had 4 bruises. Of those carcasses with a bruise, the bruise was located on the loin (29.7%), round (27.8%), chuck (16.4%), rib (14.4%), and brisket/plate/flank (11.6%). Frequencies of offal condemnations were livers (30.8%), lungs (18.2%), viscera (16.3%), hearts (11.1%), heads (2.7%), and tongues (2.0%). Compared to NBQA-2011, fewer cattle were identified for traceability, fewer were black-hided, a greater number were Holstein cattle, more with no brand and no horns, fewer without bruises, more liver, lung, and viscera condemnations, and fewer heads and tongues were condemned. The NBQA remains an influential survey for the U.S. beef industry to provide benchmarks and strategic plans for continued improvement of beef quality and consistency
Magnetic Field Generation in Stars
Enormous progress has been made on observing stellar magnetism in stars from
the main sequence through to compact objects. Recent data have thrown into
sharper relief the vexed question of the origin of stellar magnetic fields,
which remains one of the main unanswered questions in astrophysics. In this
chapter we review recent work in this area of research. In particular, we look
at the fossil field hypothesis which links magnetism in compact stars to
magnetism in main sequence and pre-main sequence stars and we consider why its
feasibility has now been questioned particularly in the context of highly
magnetic white dwarfs. We also review the fossil versus dynamo debate in the
context of neutron stars and the roles played by key physical processes such as
buoyancy, helicity, and superfluid turbulence,in the generation and stability
of neutron star fields.
Independent information on the internal magnetic field of neutron stars will
come from future gravitational wave detections. Thus we maybe at the dawn of a
new era of exciting discoveries in compact star magnetism driven by the opening
of a new, non-electromagnetic observational window.
We also review recent advances in the theory and computation of
magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo
theory. These advances offer insight into the action of stellar dynamos as well
as processes whichcontrol the diffusive magnetic flux transport in stars.Comment: 41 pages, 7 figures. Invited review chapter on on magnetic field
generation in stars to appear in Space Science Reviews, Springe
Photospheric and Subphotospheric Dynamics of Emerging Magnetic Flux
Magnetic fields emerging from the Sun's interior carry information about
physical processes of magnetic field generation and transport in the convection
zone. Soon after appearance on the solar surface the magnetic flux gets
concentrated in sunspot regions and causes numerous active phenomena on the
Sun. This paper discusses some properties of the emerging magnetic flux
observed on the solar surface and in the interior. A statistical analysis of
variations of the tilt angle of bipolar magnetic regions during the emergence
shows that the systematic tilt with respect to the equator (the Joy's law) is
most likely established below the surface. However, no evidence of the
dependence of the tilt angle on the amount of emerging magnetic flux, predicted
by the rising magnetic flux rope theories, is found. Analysis of surface plasma
flows in a large emerging active region reveals strong localized upflows and
downflows at the initial phase of emergence but finds no evidence for
large-scale flows indicating future appearance a large-scale magnetic
structure. Local helioseismology provides important tools for mapping
perturbations of the wave speed and mass flows below the surface. Initial
results from SOHO/MDI and GONG reveal strong diverging flows during the flux
emergence, and also localized converging flows around stable sunspots. The wave
speed images obtained during the process of formation of a large active region,
NOAA 10488, indicate that the magnetic flux gets concentrated in strong field
structures just below the surface. Further studies of magnetic flux emergence
require systematic helioseismic observations from the ground and space, and
realistic MHD simulations of the subsurface dynamics.Comment: 21 pages, 15 figures, to appear in Space Science Review
- …