28 research outputs found

    Methods for Estimating Mass-Sensitive Observables of Ultra-High Energy Cosmic Rays using Artificial Neural Networks

    Get PDF
    Die ultrahochenergetische kosmische Strahlung besteht aus den energiereichsten, natürlich vorkommenden Teilchen, die der Menschheit bekannt sind. Da sie zwei Größenordnungen jenseits der Energieskala der derzeitigen Generation von Teilchenbeschleunigern liegt, sind die Fragen, wie die kosmische Strahlung ihre Energie erhält und woher sie stammt, noch immer ein Mysterium. Darüber hinaus stellt der Überschuss an Myonen in den Zerfallsprodukten der ultrahochenergetischen kosmischen Strahlung in der Erdatmosphäre auch unser Verständnis der hadronischen Wechselwirkungen bei höchsten Energien in Frage. Um die Rätsel der kosmischen Strahlung zu lösen, ist es unerlässlich, die Massen der einfallenden kosmischen Strahlen zu bestimmen. Die Trennung der schweren kosmischen Strahlung von der leichten kosmischen Strahlung ermöglicht Untersuchungen der Einfallsrichtungen, um minimal abgelenkte kosmische Strahlung mit potenziellen Quellen in Verbindung zu bringen. Da die Anzahl der Nukleonen direkt mit der Anzahl der erzeugten Myonen zusammenhängt, können wir dadurch außerdem die Modelle der hadronischen Wechselwirkung anhand realer Messungen überprüfen. Aufgrund des geringen Flusses der ultrahochenergetischen kosmischen Strahlung sind große Detektoren für den indirekten Nachweis der kosmischen Strahlung erforderlich, um genügend Statistik zu erhalten. Das Pierre-Auger-Observatorium ist das größte Observatorium für kosmische Strahlung auf der Welt und deckt einen Fläche von über 3000 km2^2 ab. Der Zerfall eines hochenergetischen Teilchens in der Atmosphäre löst eine Kaskade von Sekundärteilchen aus, die als Luftschauer bezeichnet wird. Das Observatorium ist speziell für den Nachweis von solchen Luftschauern konzipiert worden. Dabei wird die Atmosphäre als Kalorimeter genutzt, um die Entwicklung der Schauer in Längsrichtung mit Fluoreszenzdetektoren zu messen. Zusätzlich wird ein Oberflächendetektor mit regelmäßig angeordneten Detektorstationen eingesetzt, um die Menge der erzeugten Sekundärteilchen zu messen. Diese Sekundärteilchen werden üblicherweise als Schauer-Fußabdruck bezeichnet. Die zunehmende Popularität künstlicher neuronaler Netze in jüngster Zeit hat Physikern neue, einfach zu handhabende Werkzeuge gegeben, um physikalische Probleme datengesteuert anzugehen. Die Verwendung neuronaler Netze bietet die Möglichkeit, detaillierte Daten, wie z. B. Schauer-Fußabdrücke, mit physikalischen Beobachtungsgrößen, wie z. B. der Energie eines Luftschauers, in Beziehung zu setzen, ohne dass ein analytisches Modell erstellt werden muss. Das Hauptziel dieser Arbeit ist die Untersuchung von Methoden, die auf neuronalen Netzen basieren, um aus den Daten des Oberflächendetektors des Pierre-Auger-Observatoriums Informationen zu extrahieren, die mit der Masse der kosmischen Strahlung korrelieren. Um dies zu erreichen, habe ich zwei verschiedene Ansätze in Betracht gezogen und die Nützlichkeit der Verwendung neuronaler Netze untersucht. Dabei basiert der erste Ansatz auf der Extraktion des Myonengehalts in jeder Station des Oberflächendetektors und der zweite Ansatz auf der Messung des gesamten Schauer-Fußabdrucks. Anhand von Monte-Carlo-Simulationsstudien habe ich den ersten Ansatz zugunsten des zweiten verworfen, da letzterer vielversprechendere Ergebnisse lieferte. Aus dieser Simulationsstudie habe ich drei verschiedene neuronale Netze ausgewählt, die für die Vorhersage der Tiefe des Schauer-Maximums, des relativen Myonengehalts und der logarithmischen Masse von Schauer-Fußabdrücken trainiert wurden. In einem letzten Schritt benutzte ich die Netzwerke, um die Massenzusammensetzung der ultrahochenergetischen kosmischen Strahlung aus Messungen vom Pierre Auger Observatorium zu bestimmen

    Combined fit to the spectrum and composition data measured by the Pierre Auger Observatory including magnetic horizon effects

    Get PDF
    The measurements by the Pierre Auger Observatory of the energy spectrum and mass composition of cosmic rays can be interpreted assuming the presence of two extragalactic source populations, one dominating the flux at energies above a few EeV and the other below. To fit the data ignoring magnetic field effects, the high-energy population needs to accelerate a mixture of nuclei with very hard spectra, at odds with the approximate E2^{-2} shape expected from diffusive shock acceleration. The presence of turbulent extragalactic magnetic fields in the region between the closest sources and the Earth can significantly modify the observed CR spectrum with respect to that emitted by the sources, reducing the flux of low-rigidity particles that reach the Earth. We here take into account this magnetic horizon effect in the combined fit of the spectrum and shower depth distributions, exploring the possibility that a spectrum for the high-energy population sources with a shape closer to E2^{-2} be able to explain the observations

    Studies of the mass composition of cosmic rays and proton-proton interaction cross-sections at ultra-high energies with the Pierre Auger Observatory

    Get PDF
    In this work, we present an estimate of the cosmic-ray mass composition from the distributions of the depth of the shower maximum (Xmax) measured by the fluorescence detector of the Pierre Auger Observatory. We discuss the sensitivity of the mass composition measurements to the uncertainties in the properties of the hadronic interactions, particularly in the predictions of the particle interaction cross-sections. For this purpose, we adjust the fractions of cosmic-ray mass groups to fit the data with Xmax distributions from air shower simulations. We modify the proton-proton cross-sections at ultra-high energies, and the corresponding air shower simulations with rescaled nucleus-air cross-sections are obtained via Glauber theory. We compare the energy-dependent composition of ultra-high-energy cosmic rays obtained for the different extrapolations of the proton-proton cross-sections from low-energy accelerator data

    Study of downward Terrestrial Gamma-ray Flashes with the surface detector of the Pierre Auger Observatory

    Get PDF
    The surface detector (SD) of the Pierre Auger Observatory, consisting of 1660 water-Cherenkov detectors (WCDs), covers 3000 km2 in the Argentinian pampa. Thanks to the high efficiency of WCDs in detecting gamma rays, it represents a unique instrument for studying downward Terrestrial Gamma-ray Flashes (TGFs) over a large area. Peculiar events, likely related to downward TGFs, were detected at the Auger Observatory. Their experimental signature and time evolution are very different from those of a shower produced by an ultrahigh-energy cosmic ray. They happen in coincidence with low thunderclouds and lightning, and their large deposited energy at the ground is compatible with that of a standard downward TGF with the source a few kilometers above the ground. A new trigger algorithm to increase the TGF-like event statistics was installed in the whole array. The study of the performance of the new trigger system during the lightning season is ongoing and will provide a handle to develop improved algorithms to implement in the Auger upgraded electronic boards. The available data sample, even if small, can give important clues about the TGF production models, in particular, the shape of WCD signals. Moreover, the SD allows us to observe more than one point in the TGF beam, providing information on the emission angle

    Measuring the muon content of inclined air showers using AERA and the water-Cherenkov detector array of the Pierre Auger Observatory

    Get PDF

    The second knee in the cosmic ray spectrum observed with the surface detector of the Pierre Auger Observatory

    Get PDF

    The dynamic range of the upgraded surface-detector stations of AugerPrime

    Get PDF
    The detection of ultra-high-energy cosmic rays by means of giant detector arrays is often limited by the saturation of the recorded signals near the impact point of the shower core at the ground, where the particle density dramatically increases. The saturation affects in particular the highest energy events, worsening the systematic uncertainties in the reconstruction of the shower characteristics. The upgrade of the Pierre Auger Observatory, called AugerPrime, includes the installation of an 1-inch Small PhotoMultiplier Tube (SPMT) inside each water-Cherenkov station (WCD) of the surface detector array. The SPMT allows an unambiguous measurement of signals down to about 250m from the shower core, thus reducing the number of events featuring a saturated station to a negligible level. In addition, a 3.8m2 plastic scintillator (Scintillator Surface Detector, SSD) is installed on top of each WCD. The SSD is designed to match the WCD (with SPMT) dynamic range, providing a complementary measurement of the shower components up to the highest energies. In this work, the design and performances of the upgraded AugerPrime surface-detector stations in the extended dynamic range are described, highlighting the accuracy of the measurements. A first analysis employing the unsaturated signals in the event reconstruction is also presented

    Investigating multiple elves and halos above strong lightning with the fluorescence detectors of the Pierre Auger Observatory

    Get PDF
    ELVES are being studied since 2013 with the twenty-four FD Telescopes of the Pierre Auger Observatory, in the province of Mendoza (Argentina), the world’s largest facility for the study of ultra-high energy cosmic rays. This study exploits a dedicated trigger and extended readout. Since December 2020, this trigger has been extended to the three High levation Auger Telescopes (HEAT), which observe the night sky at elevation angles between 30 and 60 degrees, allowing a study of ELVES from closer lightning. The high time resolution of the Auger telescopes allows us to upgrade reconstruction algorithms and to do detailed studies on multiple ELVES. The origin of multiple elves can be studied by analyzing the time difference and the amplitude ratio between flashes and comparing them with the properties of radio signals detected by the ENTLN lightning network since 2018. A fraction of multi-ELVES can also be interpreted as halos following ELVES. Halos are disc-shaped light transients emitted at 70-80 km altitudes, appearing at the center of the ELVES rings, due to the rearrangement of electric charges at the base of the ionosphere after a strong lightning event

    Status and expected performance of the AugerPrime Radio Detector

    Get PDF

    Portals to data of the Pierre Auger Observatory

    Get PDF
    corecore